Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 064206    DOI: 10.1088/1674-1056/21/6/064206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Observation of linewidth narrowing due to a spontaneously generated coherence effect

Tian Si-Cong(田思聪)a)†, Wang Chun-Liang(王春亮)b), Kang Zhi-Hui(康智慧)a), Yang Xiu-Bin(杨秀彬)d) Wan Ren-Gang(万仁刚)c), Zhang Xiao-Jun(张晓军)a), Zhang Hang(张航)d), Jiang Yun(姜云)a), Cui Hai-Ning(崔海宁)a), and Gao Jin-Yue(高锦岳)a)†
a. College of Physics, Jilin University, Changchun 130012, China and Key Laboratory of Coherent Light and Atomic and Molecular Spectroscopy of Ministry of Education, Jilin University, Changchun 130012, China;
b. College of Physics, Northeast Normal University, Changchun 130023, China;
c. State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China;
d. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Abstract  We investigate the resonance fluorescence spectrum of an atomic three-level ladder system driven by two laser fields. We show that such a system emulates to a large degree a V-type atom with parallel dipole moments-the latter being a system that exhibits spontaneously generated coherence and can display ultrasharp spectral lines. We find a suitable energy scheme in a 85Rb atom and experimentally observe the narrowing of the central peak in a rubidium atomic beam. The corresponding spectrum can convincingly demonstrate the existence of spontaneously generated coherence.
Keywords:  spontaneously generated coherence      resonance fluorescence      linewidth narrowing      atomic beam  
Received:  12 October 2011      Revised:  01 November 2011      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB921603) and the National Natural Science Foundation of China (Grant Nos. 11074097, 10904048, 10974071, and 11004080).
Corresponding Authors:  Tian Si-Cong, Gao Jin-Yue     E-mail:  jygao@mail.jlu.edu.cn

Cite this article: 

Tian Si-Cong(田思聪), Wang Chun-Liang(王春亮), Kang Zhi-Hui(康智慧), Yang Xiu-Bin(杨秀彬) Wan Ren-Gang(万仁刚), Zhang Xiao-Jun(张晓军), Zhang Hang(张航), Jiang Yun(姜云), Cui Hai-Ning(崔海宁), and Gao Jin-Yue(高锦岳) Observation of linewidth narrowing due to a spontaneously generated coherence effect 2012 Chin. Phys. B 21 064206

[1] Mollow B R 1969 Phys. Rev. 188 1969
[2] Schuda F, Stroud C R Jr and Hercher M 1974 J. Phys. B 7 L198
[3] Wu F Y, Grove R E and Ezekiel S 1975 Phys. Rev. Lett. 35 1426
[4] Grove R E, Wu F Y and Ezekiel S 1977 Phys. Rev. A 15 227
[5] Muller A, Flagg E B, Bianucci P, Wang X Y, Deppe D G, Ma W, Zhang J, Salamo G J, Xiao M and Shih C K 2007 Phys. Rev. Lett. 99 187402
[6] Vamivakas A N, Zhao Y, Lu C Y and Atat黵e M 2009 Nat. Phys. 5 198
[7] Wrigge G, Gerhardt I, Hwang J, Zumofen G and Sandoghdar V 2008 Nat. Phys. 4 60
[8] Astafiev O, Zagoskin A M, Abdumalikov A A Jr, Pashkin Yu A, Yamamoto T, Inomata K, Nakamura Y and Tsai J S 2010 Science 327 840
[9] Zhu Y F, Wu Q L, Lezama A, Gauthier D J and Mossberg T W 1990 Phys. Rev. A 41 6574
[10] Ficek Z and Freedhoff H S 1993 Phys. Rev. A 48 3092
[11] Yu C C, Bochinski J R, Kordich T M V, Mossberg T W and Ficek Z 1997 Phys. Rev. A 56 R4381
[12] Ferguson M R, Ficek Z and Dalton B J 1996 Phys. Rev. A 54 2379
[13] Evers J and Keitel C H 2002 Phys. Rev. A 65 033813
[14] Kiffner M, Evers J and Keitel C H 2006 Phys. Rev. A 73 063814
[15] Wu J H, Zhang H F and Gao J Y 2003 Opt. Lett. 28 654
[16] Qiao H X, Yang Y L, Tan X, Tong D M and Fan X J 2008 Chin. Phys. B 17 3734
[17] Yang Y L, Wang L, Liu Z B, Lu H W and Fan X J 2009 Acta Phys. Sin. 58 3161 (in Chinese)
[18] Fountoulakis A, Terzis A F and Paspalakis E 2006 Phys. Rev. A 73 033811
[19] Niu Y P and Gong S Q 2006 Phys. Rev. A 73 053811
[20] Lai B H, Du G, Yu Y F, Zhang Z M and Liu S H 2010 Acta Phys. Sin. 59 1017 (in Chinese)
[21] Raymond O C H 2007 Phys. Rev. A 75 043818
[22] Yang X H and Zhu S Y 2008 Phys. Rev. A 77 063822
[23] Yang G J, Xie M, Zhang Z and Wang K 2008 Phys. Rev. A 77 063825
[24] Gao J W, Bao Q Q, Wan R G, Cui C L and Wu J H 2011 Phys. Rev. A 83 053815
[25] Gao J W, Zhang Y, Ba N, Cui C L and Wu J H 2010 Opt. Lett. 35 709
[26] Xu X W and Liu N H 2010 Acta Phys. Sin. 59 3236 (in Chinese)
[27] Yang Y P, Xu J P, Chen H and Zhu S Y 2008 Phys. Rev. Lett. 100 043601
[28] Yannopapas V, Paspalakis E and Vitanov N V 2009 Phys. Rev. Lett. 103 063602
[29] Zhou P and Swain S 1996 Phys. Rev. Lett. 77 3995
[30] Zhou P and Swain S 1997 Phys. Rev. A 56 3011
[31] Li F L and Zhu S Y 1999 Phys. Rev. A 59 2330
[32] Ant髇 M A, Calder髇 O G and Carreño F 2005 Phys. Rev. A 72 023809
[33] Gonzalo I, Ant髇 M A, Carreño F and Calder髇 O G 2005 Phys. Rev. A 72 033809
[34] Xia H R, Ye C Y and Zhu S Y 1996 Phys. Rev. Lett. 77 1032
[35] Li L, Wang X, Yang J, Lazarov G, Qi J and Lyyra A M 2000 Phys. Rev. Lett. 84 4016
[36] Agarwal G S 2000 Phys. Rev. Lett. 84 5500
[37] Ficek Z and Swain S 2004 Phys. Rev. A 69 023401
[38] Wu J H, Li A J, Ding Y, Zhao Y C and Gao J Y 2005 Phys. Rev. A 72 023802
[39] Li A J, Gao J Y, Wu J H and Wang L 2005 J. Phys. B 38 3815
[40] Li J H, Liu J B, Chen A X and Qi C C 2006 Phys. Rev. A 74 033816
[41] Li A J, Song X L, Wei X G, Wang L and Gao J Y 2008 Phys. Rev. A 77 053806
[42] Li Z H, Wang D W, Zheng H, Zhu S Y and Zubairy M S 2010 Phys. Rev. A 82 050501(R)
[43] Narducci L M, Scully M O, Oppo G L, Ru P and Tredicce J R 1990 Phys. Rev. A 42 1630
[44] Manka A S, Doss H M, Narducci L M, Ru P and Oppo G L 1991 Phys. Rev. A 43 3748
[1] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[2] Degenerate cascade fluorescence: Optical spectral-line narrowing via a single microwave cavity
Liang Hu(胡亮), Xiang-Ming Hu(胡响明), and Qing-Ping Hu(胡庆平). Chin. Phys. B, 2021, 30(6): 064211.
[3] Resonantly driven exciton Rabi oscillation in single quantum dots emitting at 1300 nm
Yong-Zhou Xue(薛永洲), Ze-Sheng Chen(陈泽升), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川), De-Sheng Jiang(江德生), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权). Chin. Phys. B, 2017, 26(8): 084202.
[4] Probe gain via four-wave mixing based on spontaneously generated coherence
Hong Yang(杨红), Ting-gui Zhang(张廷桂), Yan Zhang(张岩). Chin. Phys. B, 2017, 26(2): 024204.
[5] Rubidium-beam microwave clock pumped by distributed feedback diode lasers
Chang Liu(刘畅), Sheng Zhou(周晟), Yan-Hui Wang(王延辉), Shi-Min Hou(侯士敏). Chin. Phys. B, 2017, 26(11): 113201.
[6] Intense source of cold cesium atoms based on a two-dimensional magneto-optical trap with independent axial cooling and pushing
Jia-Qiang Huang(黄家强), Xue-Shu Yan(颜学术), Chen-Fei Wu(吴晨菲), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2016, 25(6): 063701.
[7] Two-dimensional atom localization induced by a squeezed vacuum
Fei Wang(王飞), Jun Xu(徐俊). Chin. Phys. B, 2016, 25(10): 104201.
[8] Cavity linewidth narrowing with dark-state polaritons
Gong-Wei Lin(林功伟), Jie Yang(杨洁), Yue-Ping Niu(钮月萍), Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2016, 25(1): 014201.
[9] Phase control of light amplification in steady and transient processes in an inverted-Y atomic system with spontaneously generated coherence
Tian Si-Cong (田思聪), Tong Cun-Zhu (佟存柱), Wan Ren-Gang (万仁刚), Ning Yong-Qiang (宁永强), Qin Li (秦丽), Liu Yun (刘云), Wang Li-Jun (王立军), Zhang Hang (张航), Wang Zeng-Bin (王增斌), Gao Jin-Yue (高锦岳). Chin. Phys. B, 2014, 23(4): 044205.
[10] Modulation of atomic exit and injection rates on the phase-dependent gain without inversion in a Doppler broadened open four-level system
Liu Zhong-Bo(刘中波), Jia Ke-Ning (贾克宁), Liang Ying(梁颖), Tong Dian-Min(仝殿民), and Fan Xi-Jun(樊锡君) . Chin. Phys. B, 2012, 21(6): 064208.
[11] Influence of Doppler broadening and spontaneously generated coherence on propagation effect in a quasi lambda-type four-level system
Liu Zhong-Bo(刘中波), Liang Ying(梁颖), Jia Ke-Ning(贾克宁), and Fan Xi-Jun(樊锡君) . Chin. Phys. B, 2012, 21(2): 024206.
[12] Giant Kerr nonlinearity induced by interacting quantum coherences from decays and incoherent pumping
Bai Yan-Feng (白艳锋), Yang Wen-Xing (杨文星), Han Ding-An (韩定安), Yu Xiao-Qiang (喻小强 ). Chin. Phys. B, 2012, 21(11): 114208.
[13] A cold 87Rb atomic beam
Wang Xiao-Jia(王晓佳), Feng Yan-Ying(冯焱颖), Xue Hong-Bo(薛洪波), Zhou Zhao-Ying(周兆英), and Zhang Wen-Dong(张文栋) . Chin. Phys. B, 2011, 20(12): 126701.
[14] Sideband entanglement in collective resonance fluorescence
Zhang Xue-Hua(张雪华) and Hu Xiang-Ming(胡响明) . Chin. Phys. B, 2011, 20(11): 114205.
[15] Production and guidance of pulsed atomic beams on chip
Yan Hui(颜辉), Yang Guo-Qing(杨国卿), Shi Tao(石涛), Wang Jin(王谨), and Zhan Ming-Sheng(詹明生). Chin. Phys. B, 2010, 19(2): 023204.
No Suggested Reading articles found!