ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Observation of linewidth narrowing due to a spontaneously generated coherence effect |
Tian Si-Cong(田思聪)a)†, Wang Chun-Liang(王春亮)b), Kang Zhi-Hui(康智慧)a), Yang Xiu-Bin(杨秀彬)d) Wan Ren-Gang(万仁刚)c), Zhang Xiao-Jun(张晓军)a), Zhang Hang(张航)d), Jiang Yun(姜云)a), Cui Hai-Ning(崔海宁)a), and Gao Jin-Yue(高锦岳)a)† |
a. College of Physics, Jilin University, Changchun 130012, China and Key Laboratory of Coherent Light and Atomic and Molecular Spectroscopy of Ministry of Education, Jilin University, Changchun 130012, China; b. College of Physics, Northeast Normal University, Changchun 130023, China; c. State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China; d. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China |
|
|
Abstract We investigate the resonance fluorescence spectrum of an atomic three-level ladder system driven by two laser fields. We show that such a system emulates to a large degree a V-type atom with parallel dipole moments-the latter being a system that exhibits spontaneously generated coherence and can display ultrasharp spectral lines. We find a suitable energy scheme in a 85Rb atom and experimentally observe the narrowing of the central peak in a rubidium atomic beam. The corresponding spectrum can convincingly demonstrate the existence of spontaneously generated coherence.
|
Received: 12 October 2011
Revised: 01 November 2011
Accepted manuscript online:
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB921603) and the National Natural Science Foundation of China (Grant Nos. 11074097, 10904048, 10974071, and 11004080). |
Corresponding Authors:
Tian Si-Cong, Gao Jin-Yue
E-mail: jygao@mail.jlu.edu.cn
|
Cite this article:
Tian Si-Cong(田思聪), Wang Chun-Liang(王春亮), Kang Zhi-Hui(康智慧), Yang Xiu-Bin(杨秀彬) Wan Ren-Gang(万仁刚), Zhang Xiao-Jun(张晓军), Zhang Hang(张航), Jiang Yun(姜云), Cui Hai-Ning(崔海宁), and Gao Jin-Yue(高锦岳) Observation of linewidth narrowing due to a spontaneously generated coherence effect 2012 Chin. Phys. B 21 064206
|
[1] |
Mollow B R 1969 Phys. Rev. 188 1969
|
[2] |
Schuda F, Stroud C R Jr and Hercher M 1974 J. Phys. B 7 L198
|
[3] |
Wu F Y, Grove R E and Ezekiel S 1975 Phys. Rev. Lett. 35 1426
|
[4] |
Grove R E, Wu F Y and Ezekiel S 1977 Phys. Rev. A 15 227
|
[5] |
Muller A, Flagg E B, Bianucci P, Wang X Y, Deppe D G, Ma W, Zhang J, Salamo G J, Xiao M and Shih C K 2007 Phys. Rev. Lett. 99 187402
|
[6] |
Vamivakas A N, Zhao Y, Lu C Y and Atat黵e M 2009 Nat. Phys. 5 198
|
[7] |
Wrigge G, Gerhardt I, Hwang J, Zumofen G and Sandoghdar V 2008 Nat. Phys. 4 60
|
[8] |
Astafiev O, Zagoskin A M, Abdumalikov A A Jr, Pashkin Yu A, Yamamoto T, Inomata K, Nakamura Y and Tsai J S 2010 Science 327 840
|
[9] |
Zhu Y F, Wu Q L, Lezama A, Gauthier D J and Mossberg T W 1990 Phys. Rev. A 41 6574
|
[10] |
Ficek Z and Freedhoff H S 1993 Phys. Rev. A 48 3092
|
[11] |
Yu C C, Bochinski J R, Kordich T M V, Mossberg T W and Ficek Z 1997 Phys. Rev. A 56 R4381
|
[12] |
Ferguson M R, Ficek Z and Dalton B J 1996 Phys. Rev. A 54 2379
|
[13] |
Evers J and Keitel C H 2002 Phys. Rev. A 65 033813
|
[14] |
Kiffner M, Evers J and Keitel C H 2006 Phys. Rev. A 73 063814
|
[15] |
Wu J H, Zhang H F and Gao J Y 2003 Opt. Lett. 28 654
|
[16] |
Qiao H X, Yang Y L, Tan X, Tong D M and Fan X J 2008 Chin. Phys. B 17 3734
|
[17] |
Yang Y L, Wang L, Liu Z B, Lu H W and Fan X J 2009 Acta Phys. Sin. 58 3161 (in Chinese)
|
[18] |
Fountoulakis A, Terzis A F and Paspalakis E 2006 Phys. Rev. A 73 033811
|
[19] |
Niu Y P and Gong S Q 2006 Phys. Rev. A 73 053811
|
[20] |
Lai B H, Du G, Yu Y F, Zhang Z M and Liu S H 2010 Acta Phys. Sin. 59 1017 (in Chinese)
|
[21] |
Raymond O C H 2007 Phys. Rev. A 75 043818
|
[22] |
Yang X H and Zhu S Y 2008 Phys. Rev. A 77 063822
|
[23] |
Yang G J, Xie M, Zhang Z and Wang K 2008 Phys. Rev. A 77 063825
|
[24] |
Gao J W, Bao Q Q, Wan R G, Cui C L and Wu J H 2011 Phys. Rev. A 83 053815
|
[25] |
Gao J W, Zhang Y, Ba N, Cui C L and Wu J H 2010 Opt. Lett. 35 709
|
[26] |
Xu X W and Liu N H 2010 Acta Phys. Sin. 59 3236 (in Chinese)
|
[27] |
Yang Y P, Xu J P, Chen H and Zhu S Y 2008 Phys. Rev. Lett. 100 043601
|
[28] |
Yannopapas V, Paspalakis E and Vitanov N V 2009 Phys. Rev. Lett. 103 063602
|
[29] |
Zhou P and Swain S 1996 Phys. Rev. Lett. 77 3995
|
[30] |
Zhou P and Swain S 1997 Phys. Rev. A 56 3011
|
[31] |
Li F L and Zhu S Y 1999 Phys. Rev. A 59 2330
|
[32] |
Ant髇 M A, Calder髇 O G and Carreño F 2005 Phys. Rev. A 72 023809
|
[33] |
Gonzalo I, Ant髇 M A, Carreño F and Calder髇 O G 2005 Phys. Rev. A 72 033809
|
[34] |
Xia H R, Ye C Y and Zhu S Y 1996 Phys. Rev. Lett. 77 1032
|
[35] |
Li L, Wang X, Yang J, Lazarov G, Qi J and Lyyra A M 2000 Phys. Rev. Lett. 84 4016
|
[36] |
Agarwal G S 2000 Phys. Rev. Lett. 84 5500
|
[37] |
Ficek Z and Swain S 2004 Phys. Rev. A 69 023401
|
[38] |
Wu J H, Li A J, Ding Y, Zhao Y C and Gao J Y 2005 Phys. Rev. A 72 023802
|
[39] |
Li A J, Gao J Y, Wu J H and Wang L 2005 J. Phys. B 38 3815
|
[40] |
Li J H, Liu J B, Chen A X and Qi C C 2006 Phys. Rev. A 74 033816
|
[41] |
Li A J, Song X L, Wei X G, Wang L and Gao J Y 2008 Phys. Rev. A 77 053806
|
[42] |
Li Z H, Wang D W, Zheng H, Zhu S Y and Zubairy M S 2010 Phys. Rev. A 82 050501(R)
|
[43] |
Narducci L M, Scully M O, Oppo G L, Ru P and Tredicce J R 1990 Phys. Rev. A 42 1630
|
[44] |
Manka A S, Doss H M, Narducci L M, Ru P and Oppo G L 1991 Phys. Rev. A 43 3748
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|