Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 064204    DOI: 10.1088/1674-1056/21/6/064204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A generalized Weyl–Wigner quantization scheme unifying PQ and QP ordering and Weyl ordering of operators

Wang Ji-Suo(王继锁)a)b)†, Fan Hong-Yi(范洪义) c), and Meng Xiang-Guo(孟祥国)b)c)
a. Shandong Provincial Key Laboratory of Laser Polarization and Information Technology,College of Physics and Engineering, Qufu Normal University, Qufu 273165, China;
b. Department of Physics, Liaocheng University, Liaocheng 252059, China;
c. Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China
Abstract  By extending the usual Wigner operator to the s-parameterized one as (1/4π2)∫-∞ dyduexp≤[iu≤(q-Q) + iy≤(p-P) + i(s/2)yu] with s being a real parameter, we propose a generalized Weyl quantization scheme which accompanies a new generalized s-parameterized ordering rule. This rule recovers P-Q ordering, Q-P ordering, and Weyl ordering of operators in s=1,-1,0 respectively. Hence it differs from the Cahill-Glaubers' ordering rule which unifies normal ordering, anti-normal ordering, and Weyl ordering. We also show that in this scheme the s-parameter plays the role of correlation between two quadratures Q and P. The formula that can rearrange a given operator into its new s-parameterized ordering is presented.
Keywords:  generalized Wigner operator      generalized operator ordering rule      bivariate normal distribution  
Received:  18 November 2011      Revised:  10 December 2011      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  03.65.-w (Quantum mechanics)  
  05.30.-d (Quantum statistical mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175113 and 11147009), the Natural Science Foundation of Shandong Province of China (Grant No. ZR2010AQ027), and the Program of Higher Educational Science and Technology of Shandong Province, China (Grant No. J10LA15).
Corresponding Authors:  Wang Ji-Suo     E-mail:  jswang@qfnu.edu.cn

Cite this article: 

Wang Ji-Suo(王继锁), Fan Hong-Yi(范洪义), and Meng Xiang-Guo(孟祥国) A generalized Weyl–Wigner quantization scheme unifying PQ and QP ordering and Weyl ordering of operators 2012 Chin. Phys. B 21 064204

[1] See e.g., Schleich W P 2001 Quantum Optics in Phase Space (Berlin: Wiley-VCH)
[2] Torres-Vega G and Frederick J H 1990 J. Chem. Phys. 93 8862
[3] Agarwal G S and Wolf E 1970 Phys. Rev. D 2 2161
[4] Hu L Y and Fan H Y 2009 Phys. Rev. A 80 022115
[5] Wigner E 1932 Phys. Rev. 40 749
[6] Fan H Y 2003 J. Opt. B: Quantum Semiclass. Opt. 5 R147
[7] Fan H Y and Zaidi H 1987 Phys. Lett. A 124 303
[8] Weyl H 1927 Z. Phys. 46 1
[9] Fan H Y 1992 J. Phys. A: Math. Gen. 25 3443
[10] Cohen L 1966 J. Math. Phys. 7 781
[11] Cahill K E and Glauber R J 1969 Phys. Rev. 177 1857
[12] Glauber R J 1963 Phys. Rev. 131 2766
[13] Mehta C L 1967 Phys. Rev. Lett. 18 752
[14] Wang J S, Meng X G and Liang B L 2010 Chin. Phys. B 19 014207
[15] Meng X G, Wang J S and Liang B L 2011 Chin. Phys. B 20 014204
[1] Mutual transformations between the P–Q,Q–P, and generalized Weyl ordering of operators
Xu Xing-Lei (徐兴磊), Li Hong-Qi (李洪奇), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030305.
[2] Unifying the theory of integration within normal-, Weyl- and antinormal-ordering of operators and the s-ordered operator expansion formula of density operators
Fan Hong-Yi(范洪义). Chin. Phys. B, 2010, 19(5): 050303.
No Suggested Reading articles found!