|
|
A grooved planar ion trap design for scalable quantum information processing |
Ji Wei-Bang(冀炜邦), Wan Jin-Yin(万金银), Cheng Hua-Dong(成华东), and Liu Liang(刘亮)† |
Key Laboratory for Quantum Optics and Center for Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China |
|
|
Abstract We describe a new electrode design for a grooved surface-electrode ion trap, which is fabricated in printed-circuit-board technology with segmented electrodes. This design allows a laser beam to get through the central groove to avoid optical access blocking and laser scattering from the ion trap surface. The confining potentials are modeled both analytically and numerically. We optimize the radio frequency (rf) electrodes and dc electrodes to achieve the maximum trap depth for a given ion height above the trap electrodes. We also compare our design with the reality ion chip MI I for practical considerations. Comparison results show that our design is superior to MI I. This ion trap design may form the basis for large scale quantum computers or parallel quadrupole mass spectrometers.
|
Received: 16 September 2011
Revised: 11 January 2012
Accepted manuscript online:
|
PACS:
|
37.10.Ty
|
(Ion trapping)
|
|
85.40.-e
|
(Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 1097421). |
Corresponding Authors:
Liu Liang
E-mail: liang.liu@siom.ac.cn
|
Cite this article:
Ji Wei-Bang(冀炜邦), Wan Jin-Yin(万金银), Cheng Hua-Dong(成华东), and Liu Liang(刘亮) A grooved planar ion trap design for scalable quantum information processing 2012 Chin. Phys. B 21 063701
|
[1] |
Home J P, Hanneke D, Jost J D, Amini J M, Leibfried D and Wineland D J 2009 Science 325 1227
|
[2] |
Liu W Y, Bi S W and Dou X B 2009 Acta Phys. Sin. 59 1780 (in Chinese)
|
[3] |
Yang M R, Hai W H, Lu G B and Zhong H H 2010 Acta Phys. Sin. 59 2406 (in Chinese)
|
[4] |
Ai L Y, Yang J and Zhang Z M 2008 Acta Phys. Sin. 57 5589 (in Chinese)
|
[5] |
Chen W Q, Hai W H and Song J W 2008 Acta Phys. Sin. 57 1608 (in Chinese)
|
[6] |
Kielpinski D, Monroe C and Wineland D J 2002 Nature 417 709
|
[7] |
Chiaverini J, Blakestad R B, Britton J, Jost J D, Langer C, Leibfried D, Ozeri R and Wineland D J 2005 Quantum Infor. Comput. 5 419
|
[8] |
Stahl S, Galve F, Alonso J, Djekic S, Quint W, Valenzuela T, Verd? J, Vogel M and Werth G 2004 Eur. Phys. J. D 32 139
|
[9] |
Wan J Y, Wang Y Z and Liu L 2008 Chin. Phys. B 17 3565
|
[10] |
Janik G R, Prestage J D and Maleki L 1990 J. Appl. Phys. 67 6050
|
[11] |
Imreh G 2008 ''Implementing Segmented Ion Trap Designs for Quantum Computing'' Ph. D. Thesis (University of Oxford)
|
[12] |
Brownnutt M, Wilpers G, Gill P, Thompson R C and Sinclair A G 2006 New J. Phys. 8 232
|
[13] |
Leibrandt D R, Labaziewicz J, Clark R J, Chuang I L, Epstein R J, Ospelkaus C, Wesenberg J H, Bollinger J H, Leibfried D, Wineland D, Stick D, Stick J, Monroe C, Pai C S, Low Y, Frahm R and Slusher R E 2009 Quantum Infor. Comput. 9 901
|
[14] |
Amini J M, Britton J, Leibfried D and Wineland D J 2008 Microfabricated Chip Traps for Ions Atom Chips (New York: Wiley)
|
[15] |
Pearson C E, Leibrandt D R, Bakr W S, Mallard W J, Brown K R and Chuang I L 2007 Phys. Rev. A 73 032307
|
[16] |
Roman S 2010 New J. Phys. 12 023038
|
[17] |
Ghosh P K 1995 Ion Traps (Oxford: Clarendon Press)
|
[18] |
Dehmelt H G 1967 Adv. At. Mol. Phys. 3 53
|
[19] |
House M G 2008 Phys. Rev. A 78 033402
|
[20] |
Ji W B, Wan J Y, Cheng H D and Liu L 2008 Chin. Phys. Lett. 28 073701
|
[21] |
Kumakura M, Shirahata Y, Takasu Y, Takahashi Y and Yabuzaki T 2003 Phys. Rev. A 68 021401
|
[22] |
Brown K R, Clark R J, Labaziewicz J, Richerme P, Leibrandt D R and Chuang I L 2007 Phys. Rev. A 75 015401
|
[23] |
Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025
|
[24] |
Leibrandt D R, Labaziewicz J, Clark R J, Chuang I L, Epstein R J, Ospelkaus C, Wesenberg J H, Bollinger J J, Leibfried D, Wineland D J, Stick D, Sterk J, Monroe C, Pai C S, Low Y, Frahm R and Slusher R E 2009 Quantum Infor. Comput. 9 901
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|