Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 063701    DOI: 10.1088/1674-1056/21/6/063701
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

A grooved planar ion trap design for scalable quantum information processing

Ji Wei-Bang(冀炜邦), Wan Jin-Yin(万金银), Cheng Hua-Dong(成华东), and Liu Liang(刘亮)
Key Laboratory for Quantum Optics and Center for Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  We describe a new electrode design for a grooved surface-electrode ion trap, which is fabricated in printed-circuit-board technology with segmented electrodes. This design allows a laser beam to get through the central groove to avoid optical access blocking and laser scattering from the ion trap surface. The confining potentials are modeled both analytically and numerically. We optimize the radio frequency (rf) electrodes and dc electrodes to achieve the maximum trap depth for a given ion height above the trap electrodes. We also compare our design with the reality ion chip MI I for practical considerations. Comparison results show that our design is superior to MI I. This ion trap design may form the basis for large scale quantum computers or parallel quadrupole mass spectrometers.
Keywords:  ion trapping      microfabrication      quantum information  
Received:  16 September 2011      Revised:  11 January 2012      Accepted manuscript online: 
PACS:  37.10.Ty (Ion trapping)  
  85.40.-e (Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 1097421).
Corresponding Authors:  Liu Liang     E-mail:  liang.liu@siom.ac.cn

Cite this article: 

Ji Wei-Bang(冀炜邦), Wan Jin-Yin(万金银), Cheng Hua-Dong(成华东), and Liu Liang(刘亮) A grooved planar ion trap design for scalable quantum information processing 2012 Chin. Phys. B 21 063701

[1] Home J P, Hanneke D, Jost J D, Amini J M, Leibfried D and Wineland D J 2009 Science 325 1227
[2] Liu W Y, Bi S W and Dou X B 2009 Acta Phys. Sin. 59 1780 (in Chinese)
[3] Yang M R, Hai W H, Lu G B and Zhong H H 2010 Acta Phys. Sin. 59 2406 (in Chinese)
[4] Ai L Y, Yang J and Zhang Z M 2008 Acta Phys. Sin. 57 5589 (in Chinese)
[5] Chen W Q, Hai W H and Song J W 2008 Acta Phys. Sin. 57 1608 (in Chinese)
[6] Kielpinski D, Monroe C and Wineland D J 2002 Nature 417 709
[7] Chiaverini J, Blakestad R B, Britton J, Jost J D, Langer C, Leibfried D, Ozeri R and Wineland D J 2005 Quantum Infor. Comput. 5 419
[8] Stahl S, Galve F, Alonso J, Djekic S, Quint W, Valenzuela T, Verd? J, Vogel M and Werth G 2004 Eur. Phys. J. D 32 139
[9] Wan J Y, Wang Y Z and Liu L 2008 Chin. Phys. B 17 3565
[10] Janik G R, Prestage J D and Maleki L 1990 J. Appl. Phys. 67 6050
[11] Imreh G 2008 ''Implementing Segmented Ion Trap Designs for Quantum Computing'' Ph. D. Thesis (University of Oxford)
[12] Brownnutt M, Wilpers G, Gill P, Thompson R C and Sinclair A G 2006 New J. Phys. 8 232
[13] Leibrandt D R, Labaziewicz J, Clark R J, Chuang I L, Epstein R J, Ospelkaus C, Wesenberg J H, Bollinger J H, Leibfried D, Wineland D, Stick D, Stick J, Monroe C, Pai C S, Low Y, Frahm R and Slusher R E 2009 Quantum Infor. Comput. 9 901
[14] Amini J M, Britton J, Leibfried D and Wineland D J 2008 Microfabricated Chip Traps for Ions Atom Chips (New York: Wiley)
[15] Pearson C E, Leibrandt D R, Bakr W S, Mallard W J, Brown K R and Chuang I L 2007 Phys. Rev. A 73 032307
[16] Roman S 2010 New J. Phys. 12 023038
[17] Ghosh P K 1995 Ion Traps (Oxford: Clarendon Press)
[18] Dehmelt H G 1967 Adv. At. Mol. Phys. 3 53
[19] House M G 2008 Phys. Rev. A 78 033402
[20] Ji W B, Wan J Y, Cheng H D and Liu L 2008 Chin. Phys. Lett. 28 073701
[21] Kumakura M, Shirahata Y, Takasu Y, Takahashi Y and Yabuzaki T 2003 Phys. Rev. A 68 021401
[22] Brown K R, Clark R J, Labaziewicz J, Richerme P, Leibrandt D R and Chuang I L 2007 Phys. Rev. A 75 015401
[23] Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025
[24] Leibrandt D R, Labaziewicz J, Clark R J, Chuang I L, Epstein R J, Ospelkaus C, Wesenberg J H, Bollinger J J, Leibfried D, Wineland D J, Stick D, Sterk J, Monroe C, Pai C S, Low Y, Frahm R and Slusher R E 2009 Quantum Infor. Comput. 9 901
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
[3] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[4] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[5] Dynamic vortex Mott transition in triangular superconducting arrays
Zi-Xi Pei(裴子玺), Wei-Gui Guo(郭伟贵), and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2022, 31(3): 037404.
[6] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[7] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[8] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[9] Design, fabrication, and characterization of Ti/Au transition-edge sensor with different dimensions of suspended beams
Hong-Jun Zhang(张宏俊), Ji Wen(文继), Zhao-Hong Mo(莫钊洪), Hong-Rui Liu(刘鸿瑞), Xiao-Dong Wang(汪小东), Zhong-Hua Xiong(熊忠华), Jin-Wen Zhang(张锦文), and Mao-Bing Shuai(帅茂兵). Chin. Phys. B, 2021, 30(11): 117401.
[10] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[11] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[12] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[13] Error-detected single-photon quantum routing using a quantum dot and a double-sided microcavity system
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), Shou Zhang(张寿). Chin. Phys. B, 2019, 28(2): 020301.
[14] A method to calculate effective Hamiltonians in quantum information
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2019, 28(11): 110305.
[15] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
No Suggested Reading articles found!