Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 087301    DOI: 10.1088/1674-1056/ab9698
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantization of electromagnetic modes and angular momentum on plasmonic nanowires

Guodong Zhu(朱国栋)1, Yangzhe Guo(郭杨喆)1, Bin Dong(董斌)2, Yurui Fang(方蔚瑞)1
1 Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams(Ministry of Education);School of Physics, Dalian University of Technology, Dalian 116024, China;
2 Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials&Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, China
Abstract  

Quantum theory of surface plasmons is very important for studying the interactions between light and different metal nanostructures in nanoplasmonics. In this work, using the canonical quantization method, the SPPs on nanowires and their orbital and spin angular momentums are investigated. The results show that the SPPs on nanowire carry both orbital and spin momentums during propagation. Later, the result is applied to the plasmonic nanowire waveguide to show the agreement of the theory. The study is helpful for the nano wire based plasmonic interactions and the quantum information based optical circuit in the future.

Keywords:  surface plasmons      surface waves      optical angular momentum  
Received:  02 May 2020      Revised:  22 May 2020      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  91.30.Fn (Surface waves and free oscillations)  
  42.50.Tx (Optical angular momentum and its quantum aspects)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11704058 and 11974069), the National Special Support Program for High-level Personnel Recruitment, China (Grant No. W03020231), Liaoning Revitalization Talents Program, China (Grant No. XLYC1902113), Program for Liaoning Innovation Team in University, China (Grant No. LT2016011), Science and Technique Foundation of Dalian, China (Grant No. 2017RD12), and Fundamental Research Funds for the Central Universities, China (Grant No. DUT19RC(3)007).

Corresponding Authors:  Bin Dong, Bin Dong     E-mail:  dong@dlnu.edu.cn;yrfang@dlut.edu.cn

Cite this article: 

Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞) Quantization of electromagnetic modes and angular momentum on plasmonic nanowires 2020 Chin. Phys. B 29 087301

[1] Xu H X, Bjerneld E J, Kall M and Borjesson L 1999 Phys. Rev. Lett. 83 4357
[2] Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L and Hou J G 2013 Nature 498 82
[3] Shao J D, Tong L P, Tang S Y, Guo Z N, Zhang H, Li P H, Wang H Y, Du C and Yu X F 2015 Acs Appl. Mater. Inter. 7 5391
[4] Acimovic S S, Sipova-Jungova H, Emilsson G, Shao L, Dahlin A B, Kall M and Antosiewicz T J 2018 ACS Nano 12 9958
[5] Taylor A B and Zijlstra P 2017 Acs Sens. 2 1103
[6] Fang Y R, Li Z P, Huang Y Z, Zhang S P, Nordlander P, Halas N J and Xu H X 2010 Nano Lett. 10 1950
[7] Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R and Krenn J R 2005 Phys. Rev. Lett. 95 257403
[8] Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photon. 4 83
[9] Liu C P, Zhu X L, Zhang J S, Xu J, Leprince-Wang Y and Yu D P 2016 Chin. Phys. Lett. 33 087303
[10] Zengin G, Wersall M, Nilsson S, Antosiewicz T J, Kall M and Shegai T 2015 Phys. Rev. Lett. 114 157401
[11] Fang Y R and Sun M T 2015 Light-Sci. Appl. 4 e294
[12] Pan D, Wei H, Gao L and Xu H 2016 Phys. Rev. Lett. 117 166803
[13] Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature 450 402
[14] Chang D E, Sorensen A S, Hemmer P R and Lukin M D 2007 Phys. Rev. B 76 035420
[15] Allione M, Temnov V V, Fedutik Y, Woggon U and Artemyev M V 2008 Nano Lett. 8 31
[16] Wei H, Wang Z X, Tian X R, Kall M and Xu H X 2011 Nat. Commun. 2 387
[17] Cai Y J, Li M, Xiong X, Yu L, Ren X F, Guo G P and Guo G C 2015 Chin. Phys. Lett. 32 107305
[18] Lin J, Mueller J P B, Wang Q, Yuan G H, Antoniou N, Yuan X C and Capasso F 2013 Science 340 331
[19] Gonzalez-Tudela A, Martin-Cano D, Moreno E, Martin-Moreno L, Tejedor C and Garcia-Vidal F J 2011 Phys. Rev. Lett. 106 020501
[20] Li M, Zou C L, Ren X F, Xiong X, Cai Y J, Guo G P, Tong L M and Guo G C 2015 Nano Lett. 15 2380
[21] Qurban M, Tahira A, Ge G Q and Ikram M 2019 Chin. Phys. B 28 030304
[22] Maier S A 2007 Plasmonics:fundamentals and applications (Place:Springer)
[23] Mortensen N A, Raza S, Wubs M, Sondergaard T and Bozhevolnyi S I 2014 Nat. Commun. 5 3809
[24] Marinica D C, Kazansky A K, Nordlander P, Aizpurua J and Borisov A G 2012 Nano Lett. 12 1333
[25] Andersen K, Jensen K L, Mortensen N A and Thygesen K S 2013 Phys. Rev. B 87 235433
[26] Manjavacas A, Liu J G, Kulkarni V and Nordlander P 2014 ACS Nano 8 7630
[27] Román C L, Ortwin H and Johannes L 2019 Commun. Phys. 2 1254
[28] Besteiro L V, Kong X T, Wang Z M, Hartland G and Govorov A O 2017 Acs Photon. 4 2759
[29] Toscano G, Straubel J, Kwiatkowski A, Rockstuhl C, Evers F, Xu H X, Mortensen N A and Wubs M 2015 Nat. Commun. 6 7132
[30] Ballester D, Tame M S and Kim M S 2010 Phys. Rev. A 82 012325
[31] Alpeggiani F and Andreani L C 2014 Plasmonics 9 965
[32] Trugler A and Hohenester U 2008 Phys. Rev. B 77 115403
[33] Rodarte A L and Tao A R 2017 J. Phys. Chem. C 121 3496
[34] Waks E and Sridharan D 2010 Phys. Rev. A 82 043845
[35] Tame M S, McEnery K R, Ozdemir S K, Lee J, Maier S A and Kim M S 2013 Nat. Phys. 9 329
[36] Hopfield J J 1958 Phys. Rev. 112 1555
[37] Nakamura Y O 1983 Prog. Theor. Phys. 70 908
[38] Archambault A, Marquier F, Greffet J J and Arnold C 2010 Phys. Rev. B 82 035411
[39] Huttner B and Barnett S M 1992 Phys. Rev. A 46 4306
[40] D. B A 1983 Electromagnetic surface modes (Place:John Wiley & Sons Ltd)
[41] Picardi M F, Bliokh K Y, Rodriguez-Fortuno F J, Alpeggiani F and Nori F 2018 Optica 5 1016
[42] Altewischer E, van Exter M P and Woerdman J P 2002 Nature 418 304
[43] Moreno E, Garcia-Vidal F J, Erni D, Cirac J I and Martin-Moreno L 2004 Phys. Rev. Lett. 92 236801
[44] del Pino J, Feist J, Garcia-Vidal F J and Garcia-Ripoll J J 2014 Phys. Rev. Lett. 112 216805
[45] Berestetskii V B, Pitaevskii L P and Lifshitz E M 1982 Quantum Electrodynamics (Place:Butterworth-Heinemann)
[46] Bliokh K Y, Rodriguez-Fortuno F J, Nori F and Zayats A V 2015 Nat Photon. 9 796
[47] Wysin G M, Chikan V, Young N and Dani R K 2013 J. Phys-Condens Mat 25 325302
[48] Zhang S, Wei H, Bao K, Hakanson U, Halas N J, Nordlander P and Xu H 2011 Phys. Rev. Lett. 107 096801
[49] Elson J M and Ritchie R H 1971 Phys. Rev. B 4 4129
[50] Bliokh K Y and Nori F 2012 Phys. Rev. A 85 061801
[51] Bliokh K Y, Bekshaev A Y and Nori F 2014 Nat. Commun. 5 3300
[52] Bliokh K Y, Bekshaev A Y and Nori F 2017 Phys. Rev. Lett. 119 073901
[53] Bliokh K Y 2018 Phys. Lett. A 382 1695
[54] Fang Y 2019 Phys. Exp. 39 1
[55] Rousseaux B, Baranov D G, Kall M, Shegai T and Johansson G 2018 Phys. Rev. B 98 045435
[56] Chen X W, Sandoghdar V and Agio M 2013 Phys. Rev. Lett. 110 153605
[1] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[2] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[3] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[4] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[5] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[6] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
[7] Tunable graphene-based mid-infrared band-pass planar filter and its application
Somayyeh Asgari, Hossein Rajabloo, Nosrat Granpayeh, Homayoon Oraizi. Chin. Phys. B, 2018, 27(8): 084212.
[8] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[9] Highly stable two-dimensional graphene oxide: Electronic properties of its periodic structure and optical properties of its nanostructures
Qin Zhang(张琴), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(2): 027301.
[10] Design of tunable surface mode waveguide based on photonic crystal composite structure using organic liquid
Lan-Lan Zhang(张兰兰), Wei Liu(刘伟), Ping Li(李萍), Xi Yang(杨曦), Xu Cao(曹旭). Chin. Phys. B, 2017, 26(6): 064209.
[11] Diffraction properties of binary graphene sheet arrays
Yang Fan(樊洋), Cong Chen(陈聪), Ding-Guo Li(李定国). Chin. Phys. B, 2017, 26(1): 017302.
[12] Different optical properties in different periodic slot cavity geometrical morphologies
Jing Zhou(周静), Meng Shen(沈萌), Lan Du(杜澜), Caisong Deng(邓彩松), Haibin Ni(倪海彬), Ming Wang(王鸣). Chin. Phys. B, 2016, 25(9): 097301.
[13] Compact surface plasmon amplifier in nonlinear hybrid waveguide
Shu-shu Wang(王曙曙), Dan-qing Wang(王丹青), Xiao-peng Hu(胡小鹏), Tao Li(李涛), Shi-ning Zhu(祝世宁). Chin. Phys. B, 2016, 25(7): 077301.
[14] Excitation of anti-symmetric coupled spoof SPPs in 3D SIS waveguides based on coupling
Li-li Tian(田莉莉), Yang Chen(陈杨), Jian-long Liu(刘建龙), Kai Guo(郭凯), Ke-ya Zhou(周可雅), Yang Gao(高扬), Shu-tian Liu(刘树田). Chin. Phys. B, 2016, 25(7): 078401.
[15] A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index
Xu-Feng Li(李旭峰), Wei Peng(彭伟), Ya-Li Zhao(赵亚丽), Qiao Wang(王乔), Ji-Lin Wei(魏计林). Chin. Phys. B, 2016, 25(3): 037303.
No Suggested Reading articles found!