|
|
Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting |
Le-Yi Chen(陈乐易)1,2, Zhen-Xing Zong(宗振兴)1, Jin-Long Gao(高锦龙)1, Shao-Long Tang(唐少龙)1, You-Wei Du(都有为)1 |
1 Collaborative Innovation Center of Advanced Microstructures, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory for Nanotechnology and Department of Physics, Nanjing University, Nanjing 210093, China;
2 Department of Physics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China |
|
|
Abstract Controlling the phase of light in magnetoplasmonic structures is receiving increasing attention because of its already shown capability in ultrasensitive and label-free molecular-level detection. Magneto-optical Kerr reversal has been achieved and well explained in nanodisks by using the phase of localized plasmons. In this paper, we report that the Kerr reversal can also be produced by surface plasmon polaritons independently. We experimentally confirm this in Co and Ag/Co/Ag metal nanogratings, and can give a qualitative explanation that it is the charge accumulation at the interface between the grating surface and air that acts as the electromagnetic restoring force to contribute necessary additional phase for Kerr reversal. Our finding can enrich the means of designing and fabricating magneto-optical-based biochemical sensors.
|
Received: 18 April 2019
Revised: 17 May 2019
Accepted manuscript online:
|
PACS:
|
33.57.+c
|
(Magneto-optical and electro-optical spectra and effects)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
78.20.Ls
|
(Magneto-optical effects)
|
|
85.70.Sq
|
(Magnetooptical devices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374146), the China Postdoctoral Science Foundation (Grant No. 2018M632278), and the Jiangsu Provincial Planned Projects for Postdoctoral Research Funds, China (Grant No. 1701092C). |
Corresponding Authors:
Shao-Long Tang
E-mail: tangsl@nju.edu.cn
|
Cite this article:
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为) Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting 2019 Chin. Phys. B 28 083302
|
[1] |
Belotelov V I, Akimov I A, Pohl M, Kotov V A, Kasture S, Vengurlekar A S, Gopal A V, Yakovlev D R, Zvezdin A K and Bayer M 2011 Nat. Nanotechnol. 6 370
|
[2] |
Kataja M, Hakala T K, Julku A, Huttunen M J, van Dijken S and Torma P 2015 Nat. Commun. 6 7072
|
[3] |
Chin J Y, Steinle T, Wehlus T, Dregely D, Weiss T, Belotelov V I, Stritzker B and Giessen H 2013 Nat. Commun. 4 1599
|
[4] |
Belotelov V I, Kreilkamp L E, Akimov I A, Kalish A N, Bykov D A, Kasture S, Yallapragada V J, Venu Gopal A, Grishin A M, Khartsev S I, NurE -Alam M, Vasiliev M, Doskolovich L L, Yakovlev D R, Alameh K, Zvezdin A K and Bayer M 2013 Nat. Commun. 4 2128
|
[5] |
Zubritskaya I, Lodewijks K, Maccaferri N, Mekonnen A, Dumas R K, Åkerman J, Vavassori P and Dmitriev A 2015 Nano Lett. 15 3204
|
[6] |
Armelles G, Cebollada A, García-martín A and González M U 2013 Adv. Opt. Mater. 1 10
|
[7] |
Choi B C, Xu H, Hajisalem G and Gordon R 2018 Appl. Phys. Lett. 112 022403
|
[8] |
González-díaz B J B, García-martín A, Armelles G, Navas D, Vázquez M, Nielsch K, Wehrspohn R B and Gösele U 2007 Adv. Mater. 19 2643
|
[9] |
Armelles G, Cebollada A, García-Martín A, González M U, García F, Meneses-Rodríguez D, de Sousa N and Froufe-Pérez L S 2013 Opt. Express 21 27356
|
[10] |
Krutyanskiy V L, Chekhov A L, Ketsko V A, Stognij A I and Murzina T V 2015 Phys. Rev. B 91 121411
|
[11] |
Liu M and Zhang X 2013 Nat. Photon. 7 429
|
[12] |
Gu Y and Kornev K G 2010 J. Opt. Soc. Am. B 27 2165
|
[13] |
Tran V T, Kim J, Tufa L T, Oh S, Kwon J and Lee J 2017 Anal. Chem. 90 225
|
[14] |
Lodewijks K, Maccaferri N, Pakizeh T, Dumas R K, Zubritskaya, Åkerman J, Vavassori P and Dmitriev A 2014 Nano Lett. 14 7207
|
[15] |
Maccaferri N, Gregorczyk K E, de Oliveira T V, Kataja M, van Dijken S, Pirzadeh Z, Dmitriev A, Åkerman J, Knez M and Vavassori P 2015 Nat. Commun. 6 6150
|
[16] |
Tang Z X, Chen L Y, Zhang C, Zhang S Y, Lei C X, Li D Y, Wang S H, Tang S L and Du Y W 2018 Opt. Lett. 43 5090
|
[17] |
Tang Z X, Zhu R X, Chen L Y, Zhang C, Zong Z X, Tang S L and Du Y W 2019 Opt. Lett. 44 1666
|
[18] |
Bonanni V, Bonetti S, Pakizeh T, Pirzadeh Z, Chen J, Nogués J, Vavassori P, Hillenbr, R, Åkerman J and Dmitruev A 2011 Nano Lett. 11 5333
|
[19] |
Maccaferri N, Berger A, Bonetti S, Bonanni V, Kataja M, Qin Q H, van Dijken S, Pirzadeh Z, Dmitriev A, Nogués J, Åkerman J and Vavassori P 2013 Phys. Rev. Lett. 111 167401
|
[20] |
Chen L Y, Gao J L, Xia W B, Zhang S Y, Tang S L, Zhang W Y, Li D Y, Wu X S and Du Y W 2016 Phys. Rev. B 93 214411
|
[21] |
Chen L Y, Tang Z X, Gao J L, Li D Y, Lei C X, Cheng Z Z, Tang S L and Du Y W 2016 Chin. Phys. B 25 113301
|
[22] |
Draine B T and Flatau P J 1994 J. Opt. Soc. Am. A 11 1491
|
[23] |
Guo Z W, Jiang H T, Long Y, Yu K, Ren J, Xue C H and Chen H J 2017 Sci. Rep. 7 7742
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|