Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 117302    DOI: 10.1088/1674-1056/ab46a2
RAPID COMMUNICATION Prev   Next  

Plasmon reflection reveals local electronic properties of natural graphene wrinkles

Runkun Chen(陈闰堃)1, Cui Yang(杨翠)1, Yuping Jia(贾玉萍)2,3, Liwei Guo(郭丽伟)4,5,6, Jianing Chen(陈佳宁)1,6
1 Beijing National Laboratory for Optical Physics, Institute of Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Jilin 130033, China;
4 Research and Development Center for Functional Crystals, Laboratory of Advanced Materials and Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
5 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190, China;
6 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We systematically studied surface plasmons reflection by graphene wrinkles with different heights on SiC substrate. Combined with numerical simulation, we found that the geometry corrugation of a few nanometer height wrinkle alone does not causes a reflection of graphene plasmons. Instead, the separated wrinkle from substrate exhibits a nonlinear spatial Fermi energy distribution along the wrinkle, which acts as a heterojunction. Therefor a higher graphene wrinkle induces a stronger damped region when propagating graphene surface plasmons encounter the wrinkle and get reflected.
Keywords:  graphene plasmons      wrinkle      reflection      electronics  
Received:  15 August 2019      Revised:  12 September 2019      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  61.48.Gh (Structure of graphene)  
  72.80.Vp (Electronic transport in graphene)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0203500), the National Natural Science Foundation of China (Grant No. 11874407), and Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB 30000000).
Corresponding Authors:  Liwei Guo, Jianing Chen     E-mail:  lwguo@iphy.ac.cn;jnchen@iphy.ac.cn

Cite this article: 

Runkun Chen(陈闰堃), Cui Yang(杨翠), Yuping Jia(贾玉萍), Liwei Guo(郭丽伟), Jianing Chen(陈佳宁) Plasmon reflection reveals local electronic properties of natural graphene wrinkles 2019 Chin. Phys. B 28 117302

[35] Ferrari A C 2007 Solid State Commun. 143 47
[1] Ritchie R H 1957 Phys. Rev. D 106 874
[36] Sidorov A N, Gaskill K, Buongiorno Nardelli M, Tedesco J L, Myers-Ward R L, Eddy Jr C R, Jayasekera T, Kim K W, Jayasingha R and Sherehiy A 2012 J. Appl. Phys. 111 113706
[2] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[37] Camara N, Jouault B, Caboni A, Tiberj A, Godignon P and Camassel J 2011 Nanosci. Nanotechnol. Lett. 3 49
[3] Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photon. 4 83
[38] Jabakhanji B, Camara N, Caboni A, Consejo C, Jouault B, Godignon P and Camassel J 2012 Mater. Sci. Forum 711 235
[4] Chen W, Hu H, Jiang W, Xu Y, Zhang S and Xu H 2018 Chin. Phys. B 27 107403
[39] Jia Y, Guo L, Lu W, Guo Y, Lin J, Zhu K, Chen L, Huang Q, Huang J and Li Z 2013 Sci. Chin.-Phys. Mech. & Astron. 56 2386
[5] Qurban M, Tahira R, Ge G Q and Ikram M 2019 Chin. Phys. B 28 030304
[40] Mutschke H, Andersen A C, Clement D, Henning T and Peiter G 1999 Astron. Astrophys. 345 187
[6] Lu H, Fan Y C, Dai S Q, Mao D, Xiao F J, Li P and Zhao J L 2018 Chin. Phys. B 27 117302
[7] Liu C P, Zhang J S, Xu J, Wang Y L and Yu D P 2016 Chin. Phys. Lett. 33 87303
[8] Cheng Z Q, Yu P and Liu Z M 2018 Acta Phys. Sin. 67 197302
[9] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[10] Bolotin K I, Sikes K, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H 2008 Solid State Commun. 146 351
[11] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A and Shen Y R 2011 Nat. Nanotechnol. 6 630
[12] Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan P M, Nordlander P, Halas N J and García de Abajo F J 2013 ACS Nano 7 2388
[13] Fang Z, Wang Y, Liu Z, Schlather A, Ajayan P M, Koppens F H, Nordlander P and Halas N J 2012 ACS Nano 6 10222
[14] Chen J, Badioli M, Alonsogonzalez P, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A and Godignon P 2012 Nature 487 77
[15] Fei Z, Rodin A S, Andreev G O, Bao W, Mcleod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M H and Dominguez G 2012 Nature 487 82
[16] Abajo D and Garcia F J 2014 ACS Photon. 1 135
[17] Hupalo M, Conrad E and Tringides M 2009 Phys. Rev. B 80 041401
[18] De Heer W A, Berger C, Ruan M, Sprinkle M, Li X, Hu Y, Zhang B, Hankinson J and Conrad E 2011 Proc. Natl. Acad. Sci. USA 108 16900
[19] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[20] Lu J, Loh K P, Huang H, Chen W and Wee A T 2009 Phys. Rev. B 80 113410
[21] Chen J, Nesterov M L, Nikitin A Y, Thongrattanasiri S, Alonsogonzalez P, Slipchenko T M, Speck F, Ostler M, Seyller T and Crassee I 2013 Nano Lett. 13 6210
[22] Fang Z, Liu Z, Wang Y, Ajayan P M, Nordlander P and Halas N J 2012 Nano Lett. 12 3808
[23] Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, García de Abajo F J, Nordlander P, Zhu X and Halas N J 2013 Nano Lett. 14 299
[24] Deng S and Berry V 2016 Mater. Today 19 197
[25] Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C and Lau C N 2009 Nat. Nanotechnol. 4 562
[26] Zhu W, Low T, Perebeinos V, Bol A A, Zhu Y, Yan H, Tersoff J and Avouris P 2012 Nano Lett. 12 3431
[27] Fei Z, Rodin A S, Gannett W, Dai S, Regan W, Wagner M, Liu M, Mcleod A S, Dominguez G and Thiemens M H 2013 Nat. Nanotechnol. 8 821
[28] Garcia-Pomar J L, Nikitin A Y and Martin-Moreno L 2013 ACS Nano 7 4988
[29] Slipchenko T M, Nesterov M L, Hillenbr, R, Nikitin A Y and Martín-Moreno L 2017 ACS Photon. 4 3081
[30] Ocelic N, Huber A J and Hillenbr R 2006 Appl. Phys. Lett. 89 101124
[31] Yang R, Huang Q, Chen X, Zhang G and Gao H J 2010 J. Appl. Phys. 107 034305
[32] Ferrari A C and Basko D M 2013 Nat. Nanotechnol. 8 235
[33] Malard L, Pimenta M, Dresselhaus G and Dresselhaus M 2009 Phys. Rep. 473 51
[34] Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C and Wirtz L 2007 Nano Lett. 7 238
[35] Ferrari A C 2007 Solid State Commun. 143 47
[36] Sidorov A N, Gaskill K, Buongiorno Nardelli M, Tedesco J L, Myers-Ward R L, Eddy Jr C R, Jayasekera T, Kim K W, Jayasingha R and Sherehiy A 2012 J. Appl. Phys. 111 113706
[37] Camara N, Jouault B, Caboni A, Tiberj A, Godignon P and Camassel J 2011 Nanosci. Nanotechnol. Lett. 3 49
[38] Jabakhanji B, Camara N, Caboni A, Consejo C, Jouault B, Godignon P and Camassel J 2012 Mater. Sci. Forum 711 235
[39] Jia Y, Guo L, Lu W, Guo Y, Lin J, Zhu K, Chen L, Huang Q, Huang J and Li Z 2013 Sci. Chin.-Phys. Mech. & Astron. 56 2386
[40] Mutschke H, Andersen A C, Clement D, Henning T and Peiter G 1999 Astron. Astrophys. 345 187
[1] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[2] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[3] Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction
Ming-Lang Wang(王明郎), Bo-Han Zhang(张博涵), Wen-Fei Zhang(张雯斐), Xin-Yue Tian(田馨月), Guang-Ping Zhang(张广平), and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2022, 31(7): 077303.
[4] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[5] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[6] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
[7] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[8] Spin transport properties in ferromagnet/superconductor junctions on topological insulator
Hong Li(李红) and Xin-Jian Yang(杨新建). Chin. Phys. B, 2022, 31(12): 127301.
[9] Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction
Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华). Chin. Phys. B, 2022, 31(11): 117403.
[10] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[11] Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency
Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福). Chin. Phys. B, 2022, 31(10): 108801.
[12] Experimental analysis of interface contact behavior using a novel image processing method
Jingyu Han(韩靖宇), Zhijun Luo(罗治军), Yuling Zhang(张玉玲), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2021, 30(5): 054601.
[13] Local dynamical characteristics of Bessel beams upon reflection near the Brewster angle
Zhi-Wei Cui(崔志伟), Shen-Yan Guo(郭沈言), Yuan-Fei Hui(惠元飞), Ju Wang(王举), and Yi-Ping Han(韩一平). Chin. Phys. B, 2021, 30(4): 044201.
[14] Flexible and degradable resistive switching memory fabricated with sodium alginate
Zhuang-Zhuang Li(李壮壮), Zi-Yang Yan(严梓洋), Jia-Qi Xu(许嘉琪), Xiao-Han Zhang(张晓晗), Jing-Bo Fan(凡井波), Ya Lin(林亚), and Zhong-Qiang Wang(王中强). Chin. Phys. B, 2021, 30(4): 047302.
[15] Design of a novel correlative reflection electron microscope for in-situ real-time chemical analysis
Tian-Long Li(李天龙), Zheng Wei(魏征), and Wei-Shi Wan(万唯实). Chin. Phys. B, 2021, 30(12): 120702.
No Suggested Reading articles found!