|
|
Plasmon reflection reveals local electronic properties of natural graphene wrinkles |
Runkun Chen(陈闰堃)1, Cui Yang(杨翠)1, Yuping Jia(贾玉萍)2,3, Liwei Guo(郭丽伟)4,5,6, Jianing Chen(陈佳宁)1,6 |
1 Beijing National Laboratory for Optical Physics, Institute of Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Jilin 130033, China; 4 Research and Development Center for Functional Crystals, Laboratory of Advanced Materials and Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 5 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190, China; 6 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract We systematically studied surface plasmons reflection by graphene wrinkles with different heights on SiC substrate. Combined with numerical simulation, we found that the geometry corrugation of a few nanometer height wrinkle alone does not causes a reflection of graphene plasmons. Instead, the separated wrinkle from substrate exhibits a nonlinear spatial Fermi energy distribution along the wrinkle, which acts as a heterojunction. Therefor a higher graphene wrinkle induces a stronger damped region when propagating graphene surface plasmons encounter the wrinkle and get reflected.
|
Received: 15 August 2019
Revised: 12 September 2019
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
61.48.Gh
|
(Structure of graphene)
|
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0203500), the National Natural Science Foundation of China (Grant No. 11874407), and Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB 30000000). |
Corresponding Authors:
Liwei Guo, Jianing Chen
E-mail: lwguo@iphy.ac.cn;jnchen@iphy.ac.cn
|
Cite this article:
Runkun Chen(陈闰堃), Cui Yang(杨翠), Yuping Jia(贾玉萍), Liwei Guo(郭丽伟), Jianing Chen(陈佳宁) Plasmon reflection reveals local electronic properties of natural graphene wrinkles 2019 Chin. Phys. B 28 117302
|
[35] |
Ferrari A C 2007 Solid State Commun. 143 47
|
[1] |
Ritchie R H 1957 Phys. Rev. D 106 874
|
[36] |
Sidorov A N, Gaskill K, Buongiorno Nardelli M, Tedesco J L, Myers-Ward R L, Eddy Jr C R, Jayasekera T, Kim K W, Jayasingha R and Sherehiy A 2012 J. Appl. Phys. 111 113706
|
[2] |
Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
|
[37] |
Camara N, Jouault B, Caboni A, Tiberj A, Godignon P and Camassel J 2011 Nanosci. Nanotechnol. Lett. 3 49
|
[3] |
Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photon. 4 83
|
[38] |
Jabakhanji B, Camara N, Caboni A, Consejo C, Jouault B, Godignon P and Camassel J 2012 Mater. Sci. Forum 711 235
|
[4] |
Chen W, Hu H, Jiang W, Xu Y, Zhang S and Xu H 2018 Chin. Phys. B 27 107403
|
[39] |
Jia Y, Guo L, Lu W, Guo Y, Lin J, Zhu K, Chen L, Huang Q, Huang J and Li Z 2013 Sci. Chin.-Phys. Mech. & Astron. 56 2386
|
[5] |
Qurban M, Tahira R, Ge G Q and Ikram M 2019 Chin. Phys. B 28 030304
|
[40] |
Mutschke H, Andersen A C, Clement D, Henning T and Peiter G 1999 Astron. Astrophys. 345 187
|
[6] |
Lu H, Fan Y C, Dai S Q, Mao D, Xiao F J, Li P and Zhao J L 2018 Chin. Phys. B 27 117302
|
[7] |
Liu C P, Zhang J S, Xu J, Wang Y L and Yu D P 2016 Chin. Phys. Lett. 33 87303
|
[8] |
Cheng Z Q, Yu P and Liu Z M 2018 Acta Phys. Sin. 67 197302
|
[9] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[10] |
Bolotin K I, Sikes K, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H 2008 Solid State Commun. 146 351
|
[11] |
Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A and Shen Y R 2011 Nat. Nanotechnol. 6 630
|
[12] |
Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan P M, Nordlander P, Halas N J and García de Abajo F J 2013 ACS Nano 7 2388
|
[13] |
Fang Z, Wang Y, Liu Z, Schlather A, Ajayan P M, Koppens F H, Nordlander P and Halas N J 2012 ACS Nano 6 10222
|
[14] |
Chen J, Badioli M, Alonsogonzalez P, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A and Godignon P 2012 Nature 487 77
|
[15] |
Fei Z, Rodin A S, Andreev G O, Bao W, Mcleod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M H and Dominguez G 2012 Nature 487 82
|
[16] |
Abajo D and Garcia F J 2014 ACS Photon. 1 135
|
[17] |
Hupalo M, Conrad E and Tringides M 2009 Phys. Rev. B 80 041401
|
[18] |
De Heer W A, Berger C, Ruan M, Sprinkle M, Li X, Hu Y, Zhang B, Hankinson J and Conrad E 2011 Proc. Natl. Acad. Sci. USA 108 16900
|
[19] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[20] |
Lu J, Loh K P, Huang H, Chen W and Wee A T 2009 Phys. Rev. B 80 113410
|
[21] |
Chen J, Nesterov M L, Nikitin A Y, Thongrattanasiri S, Alonsogonzalez P, Slipchenko T M, Speck F, Ostler M, Seyller T and Crassee I 2013 Nano Lett. 13 6210
|
[22] |
Fang Z, Liu Z, Wang Y, Ajayan P M, Nordlander P and Halas N J 2012 Nano Lett. 12 3808
|
[23] |
Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, García de Abajo F J, Nordlander P, Zhu X and Halas N J 2013 Nano Lett. 14 299
|
[24] |
Deng S and Berry V 2016 Mater. Today 19 197
|
[25] |
Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C and Lau C N 2009 Nat. Nanotechnol. 4 562
|
[26] |
Zhu W, Low T, Perebeinos V, Bol A A, Zhu Y, Yan H, Tersoff J and Avouris P 2012 Nano Lett. 12 3431
|
[27] |
Fei Z, Rodin A S, Gannett W, Dai S, Regan W, Wagner M, Liu M, Mcleod A S, Dominguez G and Thiemens M H 2013 Nat. Nanotechnol. 8 821
|
[28] |
Garcia-Pomar J L, Nikitin A Y and Martin-Moreno L 2013 ACS Nano 7 4988
|
[29] |
Slipchenko T M, Nesterov M L, Hillenbr, R, Nikitin A Y and Martín-Moreno L 2017 ACS Photon. 4 3081
|
[30] |
Ocelic N, Huber A J and Hillenbr R 2006 Appl. Phys. Lett. 89 101124
|
[31] |
Yang R, Huang Q, Chen X, Zhang G and Gao H J 2010 J. Appl. Phys. 107 034305
|
[32] |
Ferrari A C and Basko D M 2013 Nat. Nanotechnol. 8 235
|
[33] |
Malard L, Pimenta M, Dresselhaus G and Dresselhaus M 2009 Phys. Rep. 473 51
|
[34] |
Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C and Wirtz L 2007 Nano Lett. 7 238
|
[35] |
Ferrari A C 2007 Solid State Commun. 143 47
|
[36] |
Sidorov A N, Gaskill K, Buongiorno Nardelli M, Tedesco J L, Myers-Ward R L, Eddy Jr C R, Jayasekera T, Kim K W, Jayasingha R and Sherehiy A 2012 J. Appl. Phys. 111 113706
|
[37] |
Camara N, Jouault B, Caboni A, Tiberj A, Godignon P and Camassel J 2011 Nanosci. Nanotechnol. Lett. 3 49
|
[38] |
Jabakhanji B, Camara N, Caboni A, Consejo C, Jouault B, Godignon P and Camassel J 2012 Mater. Sci. Forum 711 235
|
[39] |
Jia Y, Guo L, Lu W, Guo Y, Lin J, Zhu K, Chen L, Huang Q, Huang J and Li Z 2013 Sci. Chin.-Phys. Mech. & Astron. 56 2386
|
[40] |
Mutschke H, Andersen A C, Clement D, Henning T and Peiter G 1999 Astron. Astrophys. 345 187
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|