Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 037503    DOI: 10.1088/1674-1056/21/3/037503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetocaloric and barocaloric effects in a Gd5Si2Ge2 compound

Zou Jun-Ding(邹君鼎)
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Abstract  The first-order phase transition in Gd5Si2Ge2 is sensitive to both magnetic field and pressure. It may indicate that the influences of the magnetic field and the pressure on the phase transition are virtually equivalent. Moreover, theoretical analyses reveal that the total entropy change is almost definite at a certain Curie temperature no matter whether the applied external field is a magnetic field or a pressure. The entropy change curve can be broadened dramatically under pressure, and the refrigerant capacity is improved from 284.7 J/kg to 447.0 J/kg.
Keywords:  magnetic phase transformation      magnetic properties      magnetocaloric effect  
Received:  09 September 2011      Revised:  12 October 2011      Accepted manuscript online: 
PACS:  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
Fund: Projected supported by the National Natural Science Foundation of China (Grant Nos. 50801015 and 50921003) and the Fundamental Research Funds for the Central Universities, China (Grant No. YWF-11-03-Q-003).
Corresponding Authors:  Zou Jun-Ding,zoujd@buaa.edu.cn     E-mail:  zoujd@buaa.edu.cn

Cite this article: 

Zou Jun-Ding(邹君鼎) Magnetocaloric and barocaloric effects in a Gd5Si2Ge2 compound 2012 Chin. Phys. B 21 037503

[1] Pecharsky V K and Gschneidner K A Jr 1997 Phys. Rev. Lett. 78 4494
[2] Pecharsky V K and Gschneidner K A Jr 1997 Appl. Phys. Lett. 70 3299
[3] Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302
[4] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
[5] Tegus O, Br點k E, Buschow K H J and de Boer F R 2002 Nature 415 150
[6] Gama S, Coelho A A, de Campos A, Carvalho A M G, Gandra F C G, von Ranke P J and de Oliveira N A 2004 Phys. Rev. Lett. 93 237202
[7] Gschneidner K A Jr, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[8] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Ma nosa L and Planes A 2005 Nat. Mater. 4 450
[9] de Campos A, Rocco D L, Carvalho A M G, Caron L, Coelho A A, Gama S, da Silva L M, Gandra F C G, Santos A O D, Cardoso L P, von Ranke P J and de Oliveira N A 2006 Nat. Mater. 5 802
[10] Zou J D, Shen B G and Sun J R 2007 J. Phys.: Condens. Matter 19 196220
[11] Zou J D, Wada H, Shen B G, Sun J R and Li W 2008 Europhys. Lett. 81 47002
[12] Zou J D, Shen B G, Gao B, Shen J and Sun J R 2009 Adv. Mater. 21 693
[13] Zou J D, Shen B G, Gao B, Shen J and Sun J R 2009 Adv. Mater. 21 3727
[14] Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
[15] Shen J, Zhang H and Wu J F 2011 Chin. Phys. B 20 027501
[16] Zimm C, Jastrab A, Sternberg A, Pecharsky V, Gschneidner K Jr, Osborne M and Anderson I 1998 Adv. Cryog. Eng. 43 1759
[17] Zimm C, Boeder A, Chell J, Sternberg A, Fujita A, Fujieda S and Fukamichi K 2006 Int. J. Refrigeration 29 1302
[18] Gschneidner K A Jr and Pecharsky V K 2008 Int. J. Refrigeration 31 945
[19] de Oliveira N A 2007 Appl. Phys. Lett. 90 052501
[20] de Medeiros L G Jr, de Oliveira N A and Troper A 2008 J. Appl. Phys. 103 113909
[21] Ma nosa L, Gonz醠ez-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J L, Aksoy S and Acet M 2010 Nat. Mater. 9 478
[22] Pecharsky V K and Gschneidner K A Jr 1997 J. Alloys Compd. 260 98
[23] Pecharsky V K and Gschneidner K A Jr 2001 Adv. Mater. 13 683
[24] Magen C, Morellon L, Algarabel P A, Ibarra M R, Arnold Z, Kamarad J, Lograsso T A, Schlagel D L, Pecharsky V K, Tsokol A O and Gschneidner K A Jr 2005 Phys. Rev. B 72 024416
[25] Morellon L, Arnold Z, Algarabel P A, Magen C, Ibarra M R and Skorokhod Y 2004 J. Phys.: Condens. Matter 16 1623
[26] Morellon L, Algarabel P A, Ibarra M R, Blasco J, Garc'ia-Landa B, Arnold Z and Albertini F 1998 Phys. Rev. B 58 R14721
[27] Carvalho A Magnus G, Alves Cleber S, de Campos Ariana, Coelho Adelino A, Gama Sergio, Gandra Flavio C G, von Ranke Pedro J and Oliveira Nilson A 2005 J. Appl. Phys. 97 10M320
[28] Zou J D 2011 arXiv: 1012.2102v2
[29] Pecharsky A O, Gschneidner K A Jr and Pecharsky V K 2003 J. Appl. Phys. 93 4722
[30] Fujita A, Fujieda S, Fukamichi K, Mitamura H and Goto T 2001 Phys. Rev. B 65 014410
[31] Fujita A, Fukamichi K, Yamada M and Goto T 2003 J. Appl. Phys. 93 7263
[32] Fujita A, Fukamichi K, Yamada M and Goto T 2006 Phys. Rev. B 73 104420
[33] Sun Y, Arnold Z, Kamarad J, Wang G J, Shen B G and Cheng Z H 2006 Appl. Phys. Lett. 89 172513
[34] Jia L, Sun J R, Wang F W, Zhao T Y, Zhang H W, Shen B G, Li D X, Nimori S, Ren Y and Zeng Q S 2008 Appl. Phys. Lett. 92 101904
[35] Sun Y, Kamarad J, Arnold Z, Kou Z Q and Cheng Z H 2006 Appl. Phys. Lett. 88 102505
[36] Wood M E and Potter W H 1985 Cryogenics 25 667
[37] Provenzano V, Shapiro A J and Shull R D 2004 Nature 429 853
[1] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[2] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[8] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[9] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[10] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[11] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[12] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[13] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[14] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[15] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
No Suggested Reading articles found!