CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetocaloric and barocaloric effects in a Gd5Si2Ge2 compound |
Zou Jun-Ding(邹君鼎)† |
School of Materials Science and Engineering, Beihang University, Beijing 100191, China |
|
|
Abstract The first-order phase transition in Gd5Si2Ge2 is sensitive to both magnetic field and pressure. It may indicate that the influences of the magnetic field and the pressure on the phase transition are virtually equivalent. Moreover, theoretical analyses reveal that the total entropy change is almost definite at a certain Curie temperature no matter whether the applied external field is a magnetic field or a pressure. The entropy change curve can be broadened dramatically under pressure, and the refrigerant capacity is improved from 284.7 J/kg to 447.0 J/kg.
|
Received: 09 September 2011
Revised: 12 October 2011
Accepted manuscript online:
|
PACS:
|
75.30.Kz
|
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
|
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
Fund: Projected supported by the National Natural Science Foundation of China (Grant Nos. 50801015 and 50921003) and the Fundamental Research Funds for the Central Universities, China (Grant No. YWF-11-03-Q-003). |
Corresponding Authors:
Zou Jun-Ding,zoujd@buaa.edu.cn
E-mail: zoujd@buaa.edu.cn
|
Cite this article:
Zou Jun-Ding(邹君鼎) Magnetocaloric and barocaloric effects in a Gd5Si2Ge2 compound 2012 Chin. Phys. B 21 037503
|
[1] Pecharsky V K and Gschneidner K A Jr 1997 Phys. Rev. Lett. 78 4494[2] Pecharsky V K and Gschneidner K A Jr 1997 Appl. Phys. Lett. 70 3299[3] Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302[4] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675[5] Tegus O, Br點k E, Buschow K H J and de Boer F R 2002 Nature 415 150[6] Gama S, Coelho A A, de Campos A, Carvalho A M G, Gandra F C G, von Ranke P J and de Oliveira N A 2004 Phys. Rev. Lett. 93 237202[7] Gschneidner K A Jr, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479[8] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Ma nosa L and Planes A 2005 Nat. Mater. 4 450[9] de Campos A, Rocco D L, Carvalho A M G, Caron L, Coelho A A, Gama S, da Silva L M, Gandra F C G, Santos A O D, Cardoso L P, von Ranke P J and de Oliveira N A 2006 Nat. Mater. 5 802[10] Zou J D, Shen B G and Sun J R 2007 J. Phys.: Condens. Matter 19 196220[11] Zou J D, Wada H, Shen B G, Sun J R and Li W 2008 Europhys. Lett. 81 47002[12] Zou J D, Shen B G, Gao B, Shen J and Sun J R 2009 Adv. Mater. 21 693[13] Zou J D, Shen B G, Gao B, Shen J and Sun J R 2009 Adv. Mater. 21 3727[14] Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545[15] Shen J, Zhang H and Wu J F 2011 Chin. Phys. B 20 027501[16] Zimm C, Jastrab A, Sternberg A, Pecharsky V, Gschneidner K Jr, Osborne M and Anderson I 1998 Adv. Cryog. Eng. 43 1759[17] Zimm C, Boeder A, Chell J, Sternberg A, Fujita A, Fujieda S and Fukamichi K 2006 Int. J. Refrigeration 29 1302[18] Gschneidner K A Jr and Pecharsky V K 2008 Int. J. Refrigeration 31 945[19] de Oliveira N A 2007 Appl. Phys. Lett. 90 052501[20] de Medeiros L G Jr, de Oliveira N A and Troper A 2008 J. Appl. Phys. 103 113909[21] Ma nosa L, Gonz醠ez-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J L, Aksoy S and Acet M 2010 Nat. Mater. 9 478[22] Pecharsky V K and Gschneidner K A Jr 1997 J. Alloys Compd. 260 98[23] Pecharsky V K and Gschneidner K A Jr 2001 Adv. Mater. 13 683[24] Magen C, Morellon L, Algarabel P A, Ibarra M R, Arnold Z, Kamarad J, Lograsso T A, Schlagel D L, Pecharsky V K, Tsokol A O and Gschneidner K A Jr 2005 Phys. Rev. B 72 024416[25] Morellon L, Arnold Z, Algarabel P A, Magen C, Ibarra M R and Skorokhod Y 2004 J. Phys.: Condens. Matter 16 1623[26] Morellon L, Algarabel P A, Ibarra M R, Blasco J, Garc'ia-Landa B, Arnold Z and Albertini F 1998 Phys. Rev. B 58 R14721[27] Carvalho A Magnus G, Alves Cleber S, de Campos Ariana, Coelho Adelino A, Gama Sergio, Gandra Flavio C G, von Ranke Pedro J and Oliveira Nilson A 2005 J. Appl. Phys. 97 10M320[28] Zou J D 2011 arXiv: 1012.2102v2[29] Pecharsky A O, Gschneidner K A Jr and Pecharsky V K 2003 J. Appl. Phys. 93 4722[30] Fujita A, Fujieda S, Fukamichi K, Mitamura H and Goto T 2001 Phys. Rev. B 65 014410[31] Fujita A, Fukamichi K, Yamada M and Goto T 2003 J. Appl. Phys. 93 7263[32] Fujita A, Fukamichi K, Yamada M and Goto T 2006 Phys. Rev. B 73 104420[33] Sun Y, Arnold Z, Kamarad J, Wang G J, Shen B G and Cheng Z H 2006 Appl. Phys. Lett. 89 172513[34] Jia L, Sun J R, Wang F W, Zhao T Y, Zhang H W, Shen B G, Li D X, Nimori S, Ren Y and Zeng Q S 2008 Appl. Phys. Lett. 92 101904[35] Sun Y, Kamarad J, Arnold Z, Kou Z Q and Cheng Z H 2006 Appl. Phys. Lett. 88 102505[36] Wood M E and Potter W H 1985 Cryogenics 25 667[37] Provenzano V, Shapiro A J and Shull R D 2004 Nature 429 853 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|