Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 024203    DOI: 10.1088/1674-1056/21/2/024203
GENERAL Prev   Next  

Comparison of nonclassicality between photon-added and photon-subtracted squeezed vacuum states

Ma Shan-Jun(马善钧) and Luo Wen-Wei(罗文葳)
College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China
Abstract  In this paper, we introduce photon-added and photon-subtracted squeezed vacuum state (PASV and PSSV) and obtain their normalized factors, which have the similar forms involved in Lengendre polynomials. Moreover, we give the compact expressions of Wigner function, which are related to single-variable Hermite polynomials. Especially, we compare their nonclassicality in terms of Mandel Q-factor and the negativity of Wigner function.
Keywords:  photon-added and photon-subtracted squeezed vacuum state      nonclassicality      Wigner function  
Received:  19 May 2011      Revised:  23 September 2011      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Wj (State reconstruction, quantum tomography)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11047133), the Natural Science Foundation of Jiangxi Province of China (Grant No. 2010GQW0027), the Key Program Foundation of Ministry of Education of China (Grant No. 210115), and the Research Foundation of the Education Department of Jiangxi Province of China (Grant Nos. GJJ10097 and GJJ11390).
Corresponding Authors:  Ma Shan-Jun,shanjunma@126.com     E-mail:  shanjunma@126.com

Cite this article: 

Ma Shan-Jun(马善钧) and Luo Wen-Wei(罗文葳) Comparison of nonclassicality between photon-added and photon-subtracted squeezed vacuum states 2012 Chin. Phys. B 21 024203

[1] Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer-Verlag)
[2] Short R and Mandel L 1983 Phys. Rev. Lett. 51 384
[3] Dodonov V V 2002 J. Opt. B: Quantum Semiclass. Opt. 4 R1
[4] Hillery M, O'Connell R F, Scully M O and Wigner E P 1984 % Phys. Rep. 106 121
[5] Wenger J, Tualle-Brouri R and Grangier P 2004 Phys. Rev. Lett. 92 153601
[6] Parigi V, Zavatta A, Kim M S and Bellini M 2007 Science 317 1890
[7] Zavatta A, Viciani S and Bellini M 2005 Phys. Rev. A 72 023820
[8] Zavatta A, Viciani S and Bellini M 2007 Phys. Rev. A 75 052106
[9] Ourjoumtsev A, Tualle-Brouri R, Laurat J and Grangier P 2006 Science 312 83
[10] Hu L Y and Fan H Y 2009 Mod. Phys. Lett. A 24 2263
[11] Zavatta A, Viciani S and Bellini M 2004 Science 306 660
[12] Biswas A and Agarwal G S 2007 Phys. Rev. A 75 032104
[13] Mandel L 1979 Opt. Lett. 4 205
[14] Hillery M 1987 Phys. Rev. A 35 725
[15] Lee C T 1991 Phys. Rev. A 44 R2775
[16] Ashoth J K, Calsamiglia J and Ritsch H 2005 Phys. Rev. Lett. 94 173602
[17] Li J, Li G, Wang J M, Zhu S Y and Zhang T C 2010 J. Phys. B: At. Mol. Opt. Phys. 43 085504
[18] Wigner E 1932 Phys. Rev. 40 749
[19] Hu L Y and Fan H Y 2009 Chin. Phys. B 18 902
[20] Hu L Y and Fan H Y 2009 Chin. Phys. B 18 4657
[21] Yuan H C, Xu X X and Fan H Y 2010 Chin. Phys. B 19 104205
[22] Kenfack A and Zyczkowski K 2004 J. Opt. B: Quantum Semiclass. Opt. 6 396
[23] Hu L Y, Xu X X, Wang Z S and Xu X F 2010 Phys. Rev. A 82 043842
[1] Nonclassicality of photon-modulated spin coherent states in the Holstein—Primakoff realization
Xiaoyan Zhang(张晓燕), Jisuo Wang(王继锁), Lei Wang(王磊),Xiangguo Meng(孟祥国), and Baolong Liang(梁宝龙). Chin. Phys. B, 2022, 31(5): 054205.
[2] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[3] Quantum-classical correspondence and mechanical analysis ofa classical-quantum chaotic system
Haiyun Bi(毕海云), Guoyuan Qi(齐国元), Jianbing Hu(胡建兵), Qiliang Wu(吴启亮). Chin. Phys. B, 2020, 29(2): 020502.
[4] Nonclassicality of photon-modulated atomic coherent states in the Schwinger bosonic realization
Jisuo Wang(王继锁), Xiangguo Meng(孟祥国), and Xiaoyan Zhang(张晓燕). Chin. Phys. B, 2020, 29(12): 124213.
[5] Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay
Heng-Yun Lv(吕恒云), Ji-Suo Wang(王继锁), Xiao-Yan Zhang(张晓燕), Meng-Yan Wu(吴孟艳), Bao-Long Liang(梁宝龙), Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2019, 28(9): 090302.
[6] Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞). Chin. Phys. B, 2019, 28(6): 060704.
[7] Analytical and numerical investigations of displaced thermal state evolutions in a laser process
Chuan-Xun Du(杜传勋), Xiang-Guo Meng(孟祥国), Ran Zhang(张冉), Ji-Suo Wang(王继锁). Chin. Phys. B, 2017, 26(12): 120301.
[8] Quantum statistical properties of photon-added spin coherent states
G Honarasa. Chin. Phys. B, 2017, 26(11): 114202.
[9] Quantum metrology with two-mode squeezed thermal state: Parity detection and phase sensitivity
Heng-Mei Li(李恒梅), Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春), Zhen Wang(王震). Chin. Phys. B, 2016, 25(10): 104203.
[10] Algebraic and group treatments to nonlinear displaced number statesand their nonclassicality features: A new approach
N Asili Firouzabadi, M K Tavassoly, M J Faghihi. Chin. Phys. B, 2015, 24(6): 064204.
[11] Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states:Non-classical and non-Gaussian properties
Xu Xue-Xiang (徐学翔), Yuan Hong-Chun (袁洪春), Wang Yan (王燕). Chin. Phys. B, 2014, 23(7): 070301.
[12] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[13] Nonclassicality and decoherence of coherent superposition operation of photon subtraction and photon addition on squeezed state
Xu Li-Juan (徐莉娟), Tan Guo-Bin (谭国斌), Ma Shan-Jun (马善钧), Guo Qin (郭琴). Chin. Phys. B, 2013, 22(3): 030311.
[14] A new type of photon-added squeezed coherent state and its statistical properties
Zhou Jun(周军), Fan Hong-Yi(范洪义), and Song Jun(宋军) . Chin. Phys. B, 2012, 21(7): 070301.
[15] Quantum phase distribution and the number–phase Wigner function of the generalized squeezed vacuum states associated with solvable quantum systems
G. R. Honarasa, M. K. Tavassoly, and M. Hatami . Chin. Phys. B, 2012, 21(5): 054208.
No Suggested Reading articles found!