Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 024202    DOI: 10.1088/1674-1056/21/2/024202
GENERAL Prev   Next  

Non-Gaussianity and decoherence of generalized photon-added coherent state as a Hermite-excited coherent state

Li Heng-Mei(李恒梅)a)† and Xu Xue-Fen(许雪芬)b)
a. School of Science, Changzhou Institute of Technology, Changzhou 213002, China;
b. School of Mathematics and Physics, Jiangsu Teachers University of Technology, Changzhou 213001, China
Abstract  Generalized photon-added coherent state (GPACS) is obtained by repeatedly acting the combination of Bose creation and annihilation operations on the coherent state. It is found that GPACS can be regarded as a Hermite-excited coherent state due to its normalization factor related to a Hermite polynomial. In addition, we adopt the Hilbert-Schmidt distance to quantify the non-Gaussian character of GPACS and discuss the decoherence of GPACS in dissipative channel by studying the loss of nonclassicality in reference of the negativity of Wigner function.
Keywords:  generalized photon-added coherent state      Hermite polynomial      non-Gaussianity      the negativity of Wigner function  
Received:  15 July 2011      Revised:  19 August 2011      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Ca (Formalism)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174114) and the Research Foundation of Changzhou Institute of Technology, China (Grant No. YN1007).
Corresponding Authors:  Li Heng-Mei,lihengm@ustc.edu.cn or lihengm@czu.cn     E-mail:  lihengm@ustc.edu.cn or lihengm@czu.cn

Cite this article: 

Li Heng-Mei(李恒梅) and Xu Xue-Fen(许雪芬) Non-Gaussianity and decoherence of generalized photon-added coherent state as a Hermite-excited coherent state 2012 Chin. Phys. B 21 024202

[1] Dell'Anno F, Siena S D and Illuminati F 2006 Phys. Rep.428 53
[2] Dodonov V V 2002 J. Opt. B: Quantum Semiclass. Opt.4 R1
[3] Short R and Mandel L 1983 Phys. Rev. Lett. 51 384
[4] Loudon R and Knight P L 1987 J. Mod. Opt. 34 709
[5] Hong C K and Mandel L 1985 Phys. Rev. Lett. 54 323
[6] Kimble H J Dagenais M and Mandel L 1977 Phys. Rev.Lett. 39 691
[7] Hillery M, O'Connell R F, Scully M O and Wigner E P1984 Phys. Rep. 106 121
[8] Kitagawa A, Takeoka M, Sasaki M and Chefles A 2006 Phys. Rev. A 73 042310
[9] Yang Y and Li F L 2009 Phys. Rev. A 80 022315
[10] Kenfack A and Zyczkowski K 2004 J. Opt. B: Quantum Semiclass. Opt. 6 396
[11] Hu L Y and Fan H Y 2008 J. Opt. Soc. Am. B 25 1955
[12] Stobińska M, Milburn G J and Wódkiewicz K 2008 Phys.Rev. A 78 013810
[13] Agarwal G S and Tara K 1991 Phys. Rev. A 43 492
[14] Biswas A and Agarwal G S 2007 Phys. Rev. A 75 032104
[15] Marek P, Jeong H and Kim M S 2008 Phys. Rev. A 78 063811
[16] Hu L Y, Xu X X and Fan H Y 2010 J. Opt. Soc. Am. B 27 286
[17] Xu X X, Hu L Y and Fan H Y 2010 Opt. Commun. 28 31801
[18] Yuan H C, Xu X X and Fan H Y 2009 Int. J. Theor. Phys.48 3596
[19] Meng X G, Wang J S, Liang B L and Li H Q 2008 Chin.Phys. B 17 1791
[20] Xu X X, Yuan H C, Xu X X and Fan H Y 2011 Chin.Phys. B 20 024203
[21] Sivakumar S 1999 J. Phys. A: Math. Gen. 32 3441
[22] Duc T M and Noh J 2008 Opt. Commun. 281 2842
[23] Zavatta A, Viciani S and Bellini M 2004 Science 660
[24] Kalamidas D, Gerry C C and Benmoussa A 2008 Phys.Lett. A 372 1937
[25] Zhang J S and Xu J B 2009 Phys. Scr. 79 025008
[26] Yuan H C and Hu L Y 2010 J. Phys. A: Math. Theor. 43 018001
[27] Yuan H C, Li H M and Fan H Y 2009 Can. J. Phys. 87 1233
[28] Wang J S and Meng X G 2008 Chin. Phys. B 17 1254
[29] Ren Z Z, Jing H and Zhang X Z 2008 Chin. Phys. Lett.25 3562
[30] Lee S Y, Park J, Ji S W, Ooi C H R and Lee H W 2009 J. Opt. Soc. Am. B 26 1532
[31] Yang Y and Li F L 2009 J. Opt. Soc. Am. B 26 830
[32] Fiurášek J 2009 Phys. Rev. A 80 053822
[33] Lee S Y and N ha H 2010 Phys. Rev. A 82 053812
[34] Liang M L, Zhang J N and Yuan B 2008 Can. J. Phys.86 1387
[35] Yuan H C, Xu X X and Fan H Y 2010 Chin. Phys. B 19 104205
[36] Genoni M G, Paris M G A and Banaszek K 2007 Phys.Rev. A 76 042327
[37] Genoni M G, Paris M G A and Banaszek K 2008 Phys.Rev. A 78 060303(R)
[38] Ivan J S, Kumar M S and Simon R 2008 arXiv:0812.2800v1 (quant-ph)
[39] Hu L Y and Fan H Y 2009 Chin. Phys. B 18 902
[40] Fan H Y 2010 Chin. Phys. B 19 050303
[41] Gardiner C and Zoller P 2000 Quantum Noise (Berlin:Spring)
[42] Fan H Y and Hu L Y 2008 Mod. Phys. Lett. B 22 2435
[43] Li H M and Yuan H C 2010 Int. J. Theor. Phys. 48 2121
[44] Schleich W P 2000 Quantum Optics in Phase Space(Berlin: Wiley)
[1] Alternative non-Gaussianity measures for quantum states based on quantum fidelity
Cheng Xiang(向成), Shan-Shan Li(李珊珊), Sha-Sha Wen(文莎莎), and Shao-Hua Xiang(向少华). Chin. Phys. B, 2022, 31(3): 030306.
[2] Non-Gaussianity dynamics of two-mode squeezed number states subject to different types of noise based on cumulant theory
Shaohua Xiang(向少华), Xixiang Zhu(朱喜香), Kehui Song(宋克慧). Chin. Phys. B, 2018, 27(10): 100305.
[3] New useful special function in quantum optics theory
Feng Chen(陈锋), Hong-Yi Fan(范洪义). Chin. Phys. B, 2016, 25(8): 080303.
[4] Quantum mechanical operator realization of the Stirling numbers theory studied by virtue of the operator Hermite polynomials method
Fan Hong-Yi (范洪义), Lou Sen-Yue (楼森岳). Chin. Phys. B, 2015, 24(7): 070305.
[5] Generating function of product of bivariate Hermite polynomialsand their applications in studying quantum optical states
Fan Hong-Yi (范洪义), Zhang Peng-Fei (张鹏飞), Wang Zhen (王震). Chin. Phys. B, 2015, 24(5): 050303.
[6] A new optical field generated as an output of the displaced Fock state in an amplitude dissipative channel
Xu Xue-Fen(许雪芬), Fan Hong-Yi(范洪义). Chin. Phys. B, 2015, 24(1): 010301.
[7] New operator-ordering identities and associative integration formulas of two-variable Hermite polynomials for constructing non-Gaussian states
Fan Hong-Yi (范洪义), Wang Zhen (王震). Chin. Phys. B, 2014, 23(8): 080301.
[8] New generating function formulae of even- and odd-Hermite polynomials obtained and applied in the context of quantum optics
Fan Hong-Yi (范洪义), Zhan De-Hui (展德会). Chin. Phys. B, 2014, 23(6): 060301.
[9] Some new generating function formulae of the two-variable Hermite polynomials and their application in quantum optics
Zhan De-Hui (展德会), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(12): 120301.
[10] New operator identities regarding to two-variable Hermite polynomial by virtue of entangled state representation
Yuan Hong-Chun (袁洪春), Li Heng-Mei (李恒梅), Xu Xue-Fen (许雪芬). Chin. Phys. B, 2013, 22(6): 060301.
[11] A new type of photon-added squeezed coherent state and its statistical properties
Zhou Jun(周军), Fan Hong-Yi(范洪义), and Song Jun(宋军) . Chin. Phys. B, 2012, 21(7): 070301.
[12] Photon-number distribution of two-mode squeezed thermal states by entangled state representation
Hu Li-Yun(胡利云), Wang Shuai(王帅), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2012, 21(6): 064207.
[13] Nonclassicality of a two-variable Hermite polynomial state
Tan Guo-Bin(谭国斌), Xu Li-Juan(徐莉娟), and Ma Shan-Jun(马善钧) . Chin. Phys. B, 2012, 21(4): 044210.
[14] Operators' s-parameterized ordering and its classical correspondence in quantum optics theory
Fan Hong-Yi(范洪义), Yuan Hong-Chun(袁洪春), and Hu Li-Yun(胡利云). Chin. Phys. B, 2010, 19(10): 104204.
[15] Generalized photon-added coherent state and its quantum statistical properties
Yuan Hong-Chun(袁洪春), Xu Xue-Xiang(徐学翔), and Fan Hong-Yi(范洪义). Chin. Phys. B, 2010, 19(10): 104205.
No Suggested Reading articles found!