|
|
Non-Gaussianity and decoherence of generalized photon-added coherent state as a Hermite-excited coherent state |
Li Heng-Mei(李恒梅)a)† and Xu Xue-Fen(许雪芬)b) |
a. School of Science, Changzhou Institute of Technology, Changzhou 213002, China;
b. School of Mathematics and Physics, Jiangsu Teachers University of Technology, Changzhou 213001, China |
|
|
Abstract Generalized photon-added coherent state (GPACS) is obtained by repeatedly acting the combination of Bose creation and annihilation operations on the coherent state. It is found that GPACS can be regarded as a Hermite-excited coherent state due to its normalization factor related to a Hermite polynomial. In addition, we adopt the Hilbert-Schmidt distance to quantify the non-Gaussian character of GPACS and discuss the decoherence of GPACS in dissipative channel by studying the loss of nonclassicality in reference of the negativity of Wigner function.
|
Received: 15 July 2011
Revised: 19 August 2011
Accepted manuscript online:
|
PACS:
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
03.65.Ca
|
(Formalism)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174114) and the Research Foundation of Changzhou Institute of Technology, China (Grant No. YN1007). |
Corresponding Authors:
Li Heng-Mei,lihengm@ustc.edu.cn or lihengm@czu.cn
E-mail: lihengm@ustc.edu.cn or lihengm@czu.cn
|
Cite this article:
Li Heng-Mei(李恒梅) and Xu Xue-Fen(许雪芬) Non-Gaussianity and decoherence of generalized photon-added coherent state as a Hermite-excited coherent state 2012 Chin. Phys. B 21 024202
|
[1] |
Dell'Anno F, Siena S D and Illuminati F 2006 Phys. Rep.428 53
|
[2] |
Dodonov V V 2002 J. Opt. B: Quantum Semiclass. Opt.4 R1
|
[3] |
Short R and Mandel L 1983 Phys. Rev. Lett. 51 384
|
[4] |
Loudon R and Knight P L 1987 J. Mod. Opt. 34 709
|
[5] |
Hong C K and Mandel L 1985 Phys. Rev. Lett. 54 323
|
[6] |
Kimble H J Dagenais M and Mandel L 1977 Phys. Rev.Lett. 39 691
|
[7] |
Hillery M, O'Connell R F, Scully M O and Wigner E P1984 Phys. Rep. 106 121
|
[8] |
Kitagawa A, Takeoka M, Sasaki M and Chefles A 2006 Phys. Rev. A 73 042310
|
[9] |
Yang Y and Li F L 2009 Phys. Rev. A 80 022315
|
[10] |
Kenfack A and Zyczkowski K 2004 J. Opt. B: Quantum Semiclass. Opt. 6 396
|
[11] |
Hu L Y and Fan H Y 2008 J. Opt. Soc. Am. B 25 1955
|
[12] |
Stobińska M, Milburn G J and Wódkiewicz K 2008 Phys.Rev. A 78 013810
|
[13] |
Agarwal G S and Tara K 1991 Phys. Rev. A 43 492
|
[14] |
Biswas A and Agarwal G S 2007 Phys. Rev. A 75 032104
|
[15] |
Marek P, Jeong H and Kim M S 2008 Phys. Rev. A 78 063811
|
[16] |
Hu L Y, Xu X X and Fan H Y 2010 J. Opt. Soc. Am. B 27 286
|
[17] |
Xu X X, Hu L Y and Fan H Y 2010 Opt. Commun. 28 31801
|
[18] |
Yuan H C, Xu X X and Fan H Y 2009 Int. J. Theor. Phys.48 3596
|
[19] |
Meng X G, Wang J S, Liang B L and Li H Q 2008 Chin.Phys. B 17 1791
|
[20] |
Xu X X, Yuan H C, Xu X X and Fan H Y 2011 Chin.Phys. B 20 024203
|
[21] |
Sivakumar S 1999 J. Phys. A: Math. Gen. 32 3441
|
[22] |
Duc T M and Noh J 2008 Opt. Commun. 281 2842
|
[23] |
Zavatta A, Viciani S and Bellini M 2004 Science 660
|
[24] |
Kalamidas D, Gerry C C and Benmoussa A 2008 Phys.Lett. A 372 1937
|
[25] |
Zhang J S and Xu J B 2009 Phys. Scr. 79 025008
|
[26] |
Yuan H C and Hu L Y 2010 J. Phys. A: Math. Theor. 43 018001
|
[27] |
Yuan H C, Li H M and Fan H Y 2009 Can. J. Phys. 87 1233
|
[28] |
Wang J S and Meng X G 2008 Chin. Phys. B 17 1254
|
[29] |
Ren Z Z, Jing H and Zhang X Z 2008 Chin. Phys. Lett.25 3562
|
[30] |
Lee S Y, Park J, Ji S W, Ooi C H R and Lee H W 2009 J. Opt. Soc. Am. B 26 1532
|
[31] |
Yang Y and Li F L 2009 J. Opt. Soc. Am. B 26 830
|
[32] |
Fiurášek J 2009 Phys. Rev. A 80 053822
|
[33] |
Lee S Y and N ha H 2010 Phys. Rev. A 82 053812
|
[34] |
Liang M L, Zhang J N and Yuan B 2008 Can. J. Phys.86 1387
|
[35] |
Yuan H C, Xu X X and Fan H Y 2010 Chin. Phys. B 19 104205
|
[36] |
Genoni M G, Paris M G A and Banaszek K 2007 Phys.Rev. A 76 042327
|
[37] |
Genoni M G, Paris M G A and Banaszek K 2008 Phys.Rev. A 78 060303(R)
|
[38] |
Ivan J S, Kumar M S and Simon R 2008 arXiv:0812.2800v1 (quant-ph)
|
[39] |
Hu L Y and Fan H Y 2009 Chin. Phys. B 18 902
|
[40] |
Fan H Y 2010 Chin. Phys. B 19 050303
|
[41] |
Gardiner C and Zoller P 2000 Quantum Noise (Berlin:Spring)
|
[42] |
Fan H Y and Hu L Y 2008 Mod. Phys. Lett. B 22 2435
|
[43] |
Li H M and Yuan H C 2010 Int. J. Theor. Phys. 48 2121
|
[44] |
Schleich W P 2000 Quantum Optics in Phase Space(Berlin: Wiley)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|