Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 024204    DOI: 10.1088/1674-1056/21/2/024204
GENERAL Prev   Next  

Enhancement and suppression of spatial splitting four-wave mixing in atomic medium

Zhuang Yu-Ming(庄雨茗)a), Sang Su-Ling(桑苏玲)a)b), Li Pei-Ying(李培英)a), Yuan Chen-Zhi(袁晨智)a), Huo Shu-Li(霍淑利)a), Xue Xin-Xin(薛鑫鑫)a), Wang Zhi-Guo(王志国)a), Zheng Huai-Bin(郑淮斌)a), and Zhang Yan-Peng(张彦鹏)a)†
a. Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Laboratory of Information Photonic Technique, Xi'an Jiaotong University, Xi'an 710049, China;
b. School of Physics and Information Technology, Ningxia Teachers University, Guyuan 756000, China
Abstract  We experimentally report on the evolution from singly-dressed to doubly-dressed four-wave mixing (FWM) process by controlling the powers of the probe, the pump and the dressing fields respectively. The differences in the enhancement and the suppression of FWM signal between the two-level and cascade three-level atomic systems are observed and explained by the multi-dressed effect theoretically. Both the x direction and the y direction spatial splittings of the degenerate-FWM (DWFM) beams are obtained. We also investigate the switch between the enhancement and the suppression of the DWFM signals and between its spatial splittings in x direction and y direction. The spatial splittings in x direction and y direction can be controlled by the relative position and the intensity of the involved laser beams. Such a study can be useful for optimizing the efficiency of the FWM process and providing potential applications in spatial signal processing.
Keywords:  four-wave mixing      spatial splitting      enhancement      suppression  
Received:  22 July 2011      Revised:  19 August 2011      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the 973 Program of China (Grant No. 2012CB921804), the National Natural Science Foundation of China (Grant Nos. 10974151, 61078002, 61078020, 11104214, 61108017, and 11104216), the New Century Excellent Talent Project of the Ministry of Education of China (Grant No. 08-0431), and the Interdisciplinary Project of Xi’an Jiaotong University, China (Grant Nos. xjj20100100 and xjj20100151).
Corresponding Authors:  Zhang Yan-Peng,ypzhang@mail.xjtu.edu.cn     E-mail:  ypzhang@mail.xjtu.edu.cn

Cite this article: 

Zhuang Yu-Ming(庄雨茗), Sang Su-Ling(桑苏玲), Li Pei-Ying(李培英), Yuan Chen-Zhi(袁晨智), Huo Shu-Li(霍淑利), Xue Xin-Xin(薛鑫鑫), Wang Zhi-Guo(王志国), Zheng Huai-Bin(郑淮斌), and Zhang Yan-Peng(张彦鹏) Enhancement and suppression of spatial splitting four-wave mixing in atomic medium 2012 Chin. Phys. B 21 024204

[1] Agrawal G P 1990 Phys. Rev. Lett. 64 2487
[2] Hickmann J M, Gomes A S L and de Araujo C B 1992 Phys. Rev. Lett. 68 3547
[3] Zhang Y P, Wang Z G, Nie Z Q, Li C B, Chen H X, Lu K Q and Xiao M 2011 Phys. Rev. Lett. 106 093904
[4] Moseley R R, Shepherd S, Fulton D J, Sinclair B D and Dunn M H 1996 Phys. Rev. A 53 408
[5] Harris S E 1997 Phys. Today 50 36S
[6] Yan M, Rickey E G and Zhu Y F 2001 Phys. Rev. A 64 013412
[7] Hemmer P R, Katz D P, Donoghue J, Cronin-Golomb M, Shahriar M S and Kumar P 1995 Opt. Lett. 20 982
[8] Wu Y and Yang X X 2007 Phys Rev. A 76 013832
[9] Wu Y and Yang X X 2004 Phys Rev. A 70 053818
[10] Li C B, Zhang Y P, Nie Z Q, Zheng H B, Shi M Z, Liu D N, Song J P and Lu K Q 2009 Chin. Phys. B 18 5354
[11] Song Y, Dai G X, Fu Y X, Zhao J Y, Wang Z G and Zhang Y P 2011 Chin. Phys. B 20 074206
[12] Nie Z Q, Zheng H B, Li P Z, Yang Y M, Zhang Y P and Xiao M 2008 Phys. Rev. A 77 063829
[13] Zhang Y P, Nie Z Q, Wang Z G, Li C B, Wen F and Xiao M 2010 Opt. Lett. 35 3420
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[3] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[4] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[5] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[6] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[7] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[8] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[9] Effects of pulse energy ratios on plasma characteristics of dual-pulse fiber-optic laser-induced breakdown spectroscopy
Yu-Hua Hang(杭玉桦), Yan Qiu(邱岩), Ying Zhou(周颖), Tao Liu(刘韬), Bin Zhu(朱斌), Kaixing Liao(廖开星), Ming-Xin Shi(时铭鑫), and Fei Xue(薛飞). Chin. Phys. B, 2022, 31(2): 024212.
[10] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[11] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128104.
[12] Two different emission enhancement of trans-stilbene crystal under high pressure: Different evolution of structure
Yarong Gu(古雅荣), Guicheng Shao(邵贵成), Zhumei Tian(田竹梅), Haixia Li(李海霞), Kai Wang(王凯), and Bo Zou(邹勃). Chin. Phys. B, 2022, 31(1): 017901.
[13] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[14] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[15] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
No Suggested Reading articles found!