Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 054208    DOI: 10.1088/1674-1056/21/5/054208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Quantum phase distribution and the number–phase Wigner function of the generalized squeezed vacuum states associated with solvable quantum systems

G. R. Honarasaa)†, M. K. Tavassolyb), and M. Hatamib)
a. Department of Physics, Faculty of Science, Shiraz University of Technology, Shiraz 71555, Iran;
b. Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd, Iran
Abstract  The quantum phase properties of the generalized squeezed vacuum states associated with solvable quantum systems are studied by using the Pegg--Barnett formalism. Then, two nonclassical features, i.e., squeezing in the number and phase operators, as well as the number--phase Wigner function of the generalized squeezed states are investigated. Due to some actual physical situations, the present approach is applied to two classes of generalized squeezed states:solvable quantum systems with discrete spectra and nonlinear squeezed states with particular nonlinear functions. Finally, the time evolution of the nonclassical properties of the considered systems has been numerically investigated.
Keywords:  squeezed vacuum states      solvable quantum systems      phase distribution      number--phase Wigner function  
Received:  08 November 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.65.-w (Quantum mechanics)  

Cite this article: 

G. R. Honarasa, M. K. Tavassoly, and M. Hatami Quantum phase distribution and the number–phase Wigner function of the generalized squeezed vacuum states associated with solvable quantum systems 2012 Chin. Phys. B 21 054208

[1] Stoler D 1970 Phys. Rev. D 1 3217
[2] Stoler D 1971 Phys. Rev. D 4 1925
[3] Yuen H P 1976 Phys. Rev. A 13 2226
[4] Loudon R and Knight P L 1987 J. Mod. Opt. 34 709
[5] Rao Q and Xie R H 2000 Physica A 280 362
[6] Honegger R and Rieckers A 2004 Physica A 335 487
[7] Van Loock P and Braunstein S L 2000 Phys. Rev. Lett. 84 3482
[8] Van Loock P and Braunstein S L 2000 Phys. Rev. A 61 010302(R)
[9] Wu L, Kimble H J, Hall J L and Wu H 1986 Phys. Rev. Lett. 57 2520
[10] Obada A S F and Darwish M 2005 J. Opt. B 7 57
[11] Song T and Fan H 2002 Phys. Lett. A 294 66
[12] Kwek L C and Kiang D 2003 J. Opt. B 5 383
[13] Han D, Kim Y S, Noz Marilyn E and Yeh L 1993 J. Math. Phys. 34 5493
[14] Song T and Fan H 2002 J. Phys. A 35 1071
[15] Obada A S F and Abd Al-Kader G M 2005 J. Opt. B 7 S635
[16] Tavassoly M K 2006 J. Phys. A 39 11583
[17] Darwish M 2005 Int. J. Mod. Phys. B 19 715
[18] Meng X G, Wang J S and Liang B L 2007 Physica A 382 494
[19] Daoud M and Kibler M R 2011 J. Math. Phys. 52 082101
[20] Honarasa G R, Tavassoly M K and Hatami M 2009 Opt. Commun. 282 2192
[21] Honarasa G R, Tavassoly M K and Hatami M 2009 Phys. Lett. A 373 3931
[22] Honarasa G R, Tavassoly M K, Hatami M and Roknizadeh R 2011 Physica A 390 1381
[23] Ali S T, Roknizadeh R and Tavassoly M K 2004 J. Phys. A 37 4407
[24] Roy B and Roy P 2000 J. Opt. B 2 65
[25] Ali S T, Bagarello F and Gazeau J P 2010 J. Math. Phys. 51 123502
[26] Roknizadeh R and Tavassoly M K 2004 J. Phys. A 37 8111
[27] Man'ko V I, Marmo G and Zaccaria F 2009 Phys. Scr. 81 045004
[28] Pegg D T and Barnett S M 1989 Phys. Rev. A 39 1665
[29] Roy B and Roy P 1999 J. Opt. B 1 341
[30] Vaccaro J A 1995 Phys. Rev. A 52 3474
[31] Vaccaro J A 1995 Opt. Commun. 113 421
[32] Roknizadeh R and Tavassoly M K 2005 J. Math. Phys. 46 042110
[33] Landau L D and Lifshitz E M 1977 Quantum Mechanics:Non-relativistic Theory (New York:Pergamon Press)
[34] Hall R L, Saad N and von Keviczky A B 2002 J. Math. Phys. 43 94
[35] Perelomov A M 1972 Commun. Math. Phys. 26 222
[1] Generation of squeezed vacuum on cesium D2 line down to kilohertz range
Jian-Feng Tian(田剑锋), Guan-Hua Zuo(左冠华), Yu-Chi Zhang(张玉驰), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2017, 26(12): 124206.
[2] Nonclassicality of photon-added squeezed vacuum states
Si Kun(司坤), Ji Xiao-Hui(姬晓辉), and Jia Huan-Yu(贾焕玉). Chin. Phys. B, 2010, 19(6): 064205.
[3] Realistic teleportation of coherent states using squeezed vacuum states
Yan Wei(闫伟) and Zhang Wei-Jun(张为俊). Chin. Phys. B, 2007, 16(9): 2584-2586.
[4] Entanglement swapping of continuous variable using squeezed vacuum states
Yan Wei(闫伟) and Zhang Wei-Jun(张为俊). Chin. Phys. B, 2007, 16(10): 2885-2888.
[5] Dependence of coercivity on phase distribution and grain size in nanocomposite Nd2Fe14B/$\alpha$-Fe magnets
Feng Wei-Cun (冯维存), Gao Ru-Wei (高汝伟), Li Wei (李卫), Han Guang-Bing (韩广兵), Sun Yan (孙艳). Chin. Phys. B, 2005, 14(8): 1649-1652.
[6] Entanglement and disentanglement from cascade beam-splitter for squeezed vacuum state inputs
Zhou Qing-Ping (周清平), Fang Mao-Fa (方卯发), Liu Xiao-Juan (刘小娟), Chen Xiao-Mei (陈笑梅), Wu Qin (吴琴), Xu Hong-Zhi (徐洪智). Chin. Phys. B, 2004, 13(11): 1881-1886.
No Suggested Reading articles found!