Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 070301    DOI: 10.1088/1674-1056/23/7/070301
GENERAL Prev   Next  

Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states:Non-classical and non-Gaussian properties

Xu Xue-Xiang (徐学翔)a b, Yuan Hong-Chun (袁洪春)c, Wang Yan (王燕)a b
a College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China;
b Key Laboratory of Optoelectronic and Telecommunication of Jiangxi, Nanchang 330022, China;
c College of Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou 213002, China
Abstract  We investigate the nonclassical properties of arbitrary number photon annihilation-then-creation operation (AC) and creation-then-annihilation operation (CA) to the thermal state (TS), whose normalization factors are related to the polylogarithm function. Then we compare their quantum characters, such as photon number distribution, average photon number, Mandel Q-parameter, purity and the Wigner function. Because of the noncommutativity between the annihilation operator and the creation operator, the ACTS and the CATS have different nonclassical properties. It is found that nonclassical properties are exhibited more strongly after AC than after CA. In addition we also examine their non-Gaussianity. The result shows that the ACTS can present a slightly bigger non-Gaussianity than the CATS.
Keywords:  annihilation-then-creation      creation-then-annihilation      Wigner function      nonclassicality  
Received:  27 November 2013      Revised:  02 January 2014      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  42.50  
  -p  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11264018 and 11174114), the Research Foundation of the Education Department of Jiangxi Province of China (Grant Nos. GJJ12171 and GJJ12202), and the Science Fund for Youth of Jiangxi Province, China (Grant Nos. 20132BAB212006 and 2011ZBAB215036), the Open Foundation of the Key Laboratory of Optoelectronic and Telecommunication of Jiangxi Province, China (Grant No. 2013004), and the National Science Foundation of Jiangsu Higher Education Institute of China (Grant No. 12KJD140001).
Corresponding Authors:  Xu Xue-Xiang     E-mail:  xxxjxnu@gmail.com
About author:  03.65.-w; 42.50; -p; 03.67.-a

Cite this article: 

Xu Xue-Xiang (徐学翔), Yuan Hong-Chun (袁洪春), Wang Yan (王燕) Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states:Non-classical and non-Gaussian properties 2014 Chin. Phys. B 23 070301

[1] Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer-Verlag)
[2] Short R and Mandel L 1983 Phys. Rev. Lett. 51 384
[3] Dodonov V V 2002 J. Opt. B: Quantum Semiclassical Opt. 4 R1
[4] Hillery M, O'Connell R F, Scully M O and Wigner E P 1984 Phys. Rep. 106 121
[5] Kim M S 2008 J. Phys. B 41 133001
[6] Ma S J and Luo W W 2012 Chin. Phys. B 21 024203
[7] Xu X X, Yuan H C, Fan H Y 2011 Chin. Phys. B. 20 024203
[8] Wei L F, Wang S J and Xi D P 1999 J. Opt. B: Quantum Semiclassical Opt. 1 619
[9] Agarwal G S and Tara K 1991 Phys. Rev. A 43 492
[10] Zavatta A, Viciani S and Bellini M 2005 Phys. Rev. A 72 023820
[11] Zavatta A, Viciani S and Bellini M 2007 Phys. Rev. A 75 052106
[12] Ourjoumtsev A, Tualle-Brouri R, Laurat J, Grangier P 2006 Science 312 83
[13] Yang Y and Li F L 2009 Phys. Rev. A 80 022315
[14] Lee S Y, Park J, Ji S W, Raymond Ooi C H and Lee H W 2009 J. Opt. Soc. Am. B 26 1532
[15] Fiurasek J 2010 Phys. Rev. A 82 042331
[16] Lee S Y and Nha H 2010 Phys. Rev. A 82 053812
[17] Fiurasek J 2002 Phys. Rev. Lett. 89 137904
[18] Genoni M G, Paris M G A and Banaszek K 2007 Phys. Rev. A 76 042327
[19] Genoni M G, Paris M G A and Banaszek K 2008 Phys. Rev. A 78 060303
[20] Genoni M G and Paris M G A 2010 Phys. Rev. A 82 052341
[21] Loudon R 2000 The Quantum Theory of Light (New York: Oxford University Press Inc.)
[22] Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover Publications)
[23] Mandel L 1979 Opt. Lett. 4 205
[24] Wigner E 1932 Phys. Rev. 40 749
[25] Kenfack A and Zyczkowski K 2004 J. Opt. B: Quantum Semiclass. Opt. 6 396
[26] Hu L Y, Xu X X, Wang Z S and Xu X F 2010 Phys. Rev. A 82 043842
[27] Yuan H C, Xu X X and Fan H Y 2010 Chin. Phys. B 19 104205
[28] Barnett S M and Radmore P M 1997 Methods in Theoretical Quantum Optics (New York: Oxford University Press Inc.)
[29] Sun Q, Al-Amri M and Zubairy M S 2008 Phys. Rev. A 78 043801
[1] Nonclassicality of photon-modulated spin coherent states in the Holstein—Primakoff realization
Xiaoyan Zhang(张晓燕), Jisuo Wang(王继锁), Lei Wang(王磊),Xiangguo Meng(孟祥国), and Baolong Liang(梁宝龙). Chin. Phys. B, 2022, 31(5): 054205.
[2] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[3] Quantum-classical correspondence and mechanical analysis ofa classical-quantum chaotic system
Haiyun Bi(毕海云), Guoyuan Qi(齐国元), Jianbing Hu(胡建兵), Qiliang Wu(吴启亮). Chin. Phys. B, 2020, 29(2): 020502.
[4] Nonclassicality of photon-modulated atomic coherent states in the Schwinger bosonic realization
Jisuo Wang(王继锁), Xiangguo Meng(孟祥国), and Xiaoyan Zhang(张晓燕). Chin. Phys. B, 2020, 29(12): 124213.
[5] Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay
Heng-Yun Lv(吕恒云), Ji-Suo Wang(王继锁), Xiao-Yan Zhang(张晓燕), Meng-Yan Wu(吴孟艳), Bao-Long Liang(梁宝龙), Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2019, 28(9): 090302.
[6] Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞). Chin. Phys. B, 2019, 28(6): 060704.
[7] Analytical and numerical investigations of displaced thermal state evolutions in a laser process
Chuan-Xun Du(杜传勋), Xiang-Guo Meng(孟祥国), Ran Zhang(张冉), Ji-Suo Wang(王继锁). Chin. Phys. B, 2017, 26(12): 120301.
[8] Quantum statistical properties of photon-added spin coherent states
G Honarasa. Chin. Phys. B, 2017, 26(11): 114202.
[9] Quantum metrology with two-mode squeezed thermal state: Parity detection and phase sensitivity
Heng-Mei Li(李恒梅), Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春), Zhen Wang(王震). Chin. Phys. B, 2016, 25(10): 104203.
[10] Algebraic and group treatments to nonlinear displaced number statesand their nonclassicality features: A new approach
N Asili Firouzabadi, M K Tavassoly, M J Faghihi. Chin. Phys. B, 2015, 24(6): 064204.
[11] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[12] Nonclassicality and decoherence of coherent superposition operation of photon subtraction and photon addition on squeezed state
Xu Li-Juan (徐莉娟), Tan Guo-Bin (谭国斌), Ma Shan-Jun (马善钧), Guo Qin (郭琴). Chin. Phys. B, 2013, 22(3): 030311.
[13] A new type of photon-added squeezed coherent state and its statistical properties
Zhou Jun(周军), Fan Hong-Yi(范洪义), and Song Jun(宋军) . Chin. Phys. B, 2012, 21(7): 070301.
[14] Quantum phase distribution and the number–phase Wigner function of the generalized squeezed vacuum states associated with solvable quantum systems
G. R. Honarasa, M. K. Tavassoly, and M. Hatami . Chin. Phys. B, 2012, 21(5): 054208.
[15] Nonclassicality of a two-variable Hermite polynomial state
Tan Guo-Bin(谭国斌), Xu Li-Juan(徐莉娟), and Ma Shan-Jun(马善钧) . Chin. Phys. B, 2012, 21(4): 044210.
No Suggested Reading articles found!