Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 017803    DOI: 10.1088/1674-1056/21/1/017803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A polarized micro-Raman study of a 0.65PbMg1/3Nb2/3O3–0.35PbTiO3 single crystal

Zhang Li-Yan(张丽艳), Zhu Ke(朱恪), and Liu Yu-Long(刘玉龙)
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Polarized micro-Raman spectra of a 0.65PbMg1/3Nb2/3O3-0.35PbTiO3 (0.65PMN-0.35PT) single crystal poled in the [001] direction are obtained in a wide frequency range (50-2000 cm-1) at different temperatures. The best fit to the Raman spectrum at 77 K is achieved using 17 Lorenzians to convolute into it, and this is proved to be a reasonable fit. According to the group theory and selection rules of overtone and combinational modes, apart from the seven Raman modes that are from first-order Raman scattering, the remaining ones are attributed to being from second-order Raman scattering. A comparison between the experimental results and theoretical predictions shows that they are in satisfactory agreement with each other. Our results indicate that at 77 K the sample belongs to the rhombohedral symmetry with the C3v5 (R3m) space group (Z=1). In our study, on heating, the 0.65PMN-0.35PT single crystal undergoes a rhombohedral to tetragonal to cubic phase transition sequence. The two phase transitions occur at 340 and 440 K, which correspond to the disappearance of the soft mode near 106 cm-1 recorded in VV polarization and the vanishing of the band around 780 cm-1 in VH polarization, respectively.
Keywords:  0.65PMN-0.35PT      polarized micro-Raman      second-order Raman scattering      phase transition  
Received:  21 June 2011      Revised:  27 October 2011      Accepted manuscript online: 
PACS:  78.30.-j (Infrared and Raman spectra)  
  77.80.B- (Phase transitions and Curie point)  
  77.80.Jk (Relaxor ferroelectrics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10674171 and 10874236).

Cite this article: 

Zhang Li-Yan(张丽艳), Zhu Ke(朱恪), and Liu Yu-Long(刘玉龙) A polarized micro-Raman study of a 0.65PbMg1/3Nb2/3O3–0.35PbTiO3 single crystal 2012 Chin. Phys. B 21 017803

[1] Ho J, Liu K and Lin I 1993 J. Mater. Sci. 28 4497
[2] Kelly J, Leonard M, Tantigate C and Safari A 1997 J. Am. Ceram. Soc. 80 957
[3] Park S E and Shrout T R 1997 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44 1140
[4] Park S E E, Lopath P D, Shung K K and Shrout T R 1997 Proc. SPIE 3037 140
[5] Zhang R, Jiang B and Cao W 2001 J. Appl. Phys. 90 3471
[6] Fu H and Cohen R E 2000 Nature 403 281
[7] Idink H and White W B 1994 J. Appl. Phys. 76 1789
[8] Svitelskiy O, Toulouse J, Yong G and Ye Z G 2003 Phys. Rev. B 68 104107
[9] Kamba S, Buixaderas E, Petzelt J, Fousek J, Nosek J and Bridenbaugh P 2003 J. Appl. Phys. 93 933
[10] Slodczyk A, Kania A, Daniel P and Ratuszna A 2005 J. Phys. D: Appl. Phys. 38 2910
[11] Noheda B, Cox D, Shirane G, Gao J and Ye Z G 2002 Phys. Rev. B 66 054104
[12] Ye Z G, Noheda B, Dong M, Cox D and Shirane G 2001 Phys. Rev. B 64 184114
[13] Slodczyk A, Daniel P and Kania A 2008 Phys. Rev. B 77 184114
[14] Jiang F and Kojima S 1999 Jpn. J. Appl. Phys. 38 5128
[15] Ohwa H, Iwata M, Orihara H, Yasuda N and Ishibashi Y 2001 J. Phys. Soc. Jpn. 70 3149
[16] Slodczyk A, Colomban P and Pham-Thi M 2008 J. Phys. Chem. Solids 69 2503
[17] Curecheriu L P, Mitoseriu L, Ianculescu A and Braileanu A 2009 Appl. Phys. A 97 587
[18] Ching-Prado E, Cordero J, Katiyar R and Bhalla A 1996 J. Vac. Sci. Technol. A 14 762
[19] Lima J A, Paraguassu W, Freire P T C, Souza Filho A G, Paschoal C W A, Filho J M, Zanin A L, Lente M H, Garcia D and Eiras J A 2009 J. Raman. Spectrosc. 40 1144
[20] Sun J Y, Yang Y, K. Z, Liu Y L, Siu G and Xu Z 2008 Chin. Phys. Lett. 25 290
[21] Shen M, Siu G G, Xu Z K and Cao W 2005 Appl. Phys. Lett. 86 252903
[22] Luo H, Xu G, Xu H, Wang P and Yin Z 2000 Jpn. J. Appl. Phys. 39 5581
[23] Husson E, Abello L and Morell A 1990 Mater. Res. Bull. 25 539
[24] Han J and Cao W 2003 Phys. Rev. B 68 134102
[25] Li F, Zhang S, Xu Z, Wei X, Luo J and Shrout T R 2010 J. Appl. Phys. 108 034106
[26] Liu Y L, Jiang Y J, Liu J Q, Mo Y J, Xie S S, Zhang Z B and Quang S F 1994 Phys. Rev. B 49 5058
[27] Poulet H and Mathieu J P 1976 Vibration Spectra and Symmetry of Crystals (New York: Gordon & Breach)
[28] Jiang F and Kojima S 2000 Phys. Rev. B 62 8572
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[12] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!