Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 094101    DOI: 10.1088/1674-1056/20/9/094101
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Independently tunable multichannel terahertz filters

Zhang Hui-Yun(张会云), Gao Ying(高营), Zhang Yu-Ping(张玉萍), and Wang Shi-Fan(王世范)
College of Science, Shandong University of Science and Technology, Qingdao 266510, China
Abstract  We numerically demonstrate terahertz multichannel filters with independently tunable defect modes based on fractal photonic crystals. Single defect and multiple defects models are proposed to fabricate the multichannel terahertz filters. The facts that the wave functions of the defect states do not overlap and their bases are orthogonal lead to the independency among the defect modes. The simulated results theoretically provide the principle for fabricating independently tunable multichannel terahertz filters by utilizing one-dimensional photonic crystals with defects.
Keywords:  fractal structure      photonic crystal      terahertz filter      defect  
Received:  18 March 2011      Revised:  19 April 2011      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  87.50.U-  
  43.58.Kr (Spectrum and frequency analyzers and filters; acoustical and electrical oscillographs; photoacoustic spectrometers; acoustical delay lines and resonators)  

Cite this article: 

Zhang Hui-Yun(张会云), Gao Ying(高营), Zhang Yu-Ping(张玉萍), and Wang Shi-Fan(王世范) Independently tunable multichannel terahertz filters 2011 Chin. Phys. B 20 094101

[1] Xu J Z and Zhang X C 2006 Appl. Phys. Lett. 88 151107
[2] Zhong H, Sanchez A R and Zhang X C 2006 Opt. Express 14 9130
[3] Dragomana D and Dragoman M 2004 Prog. Quant. Electron 28 66
[4] Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F and Zimdars D 2005 Semicond. Sci. Technol. 20 266
[5] Grant P D and Laframboise S R 2009 Elctron. Lett. 45 18
[6] N`himec H, Duvillaret L and Garet F 2004 J. Appl. Phys. 96 8
[7] Chen H M and Meng Q 2011 Acta Phys. Sin. 60 014202 (in Chinese)
[8] Zhang R and Cao J C 2010 Acta Phys. Sin. 59 3924 (in Chinese)
[9] Brand S, Abram R A and Kaliteevski M A 2007 Phys. Rev. B 75 035102
[10] Gallant A J, Kaliteevski M A, Brand S, Wood D, Petty M, Abram R A and Chamberlain J M 2007 J. Appl. Phys. 102 023102
[11] Melo A M, Kornberg M A and Kaufmann P 2008 Appl. Opt. 47 6064
[12] Joannopoulos J D 2008 Photonic Crystals: Molding the Flow of Light (New York: Biswas Hope Press)
[13] Hattori T, Tsurumachi N, Muroi N, Nakatsuka H and Ogino E 1996 Prog. Cryst. Growth Charact. 33 183
[14] Kee C S and Lim H 2001 Phys. Rev. B 64 121103
[15] Wostyn K, Zhao Y, de Schaetzen G, Hellemans L, Matsuda N, Clays K and Persoons A 2003 Langmuir 10 19
[16] Mounaix P, Nguema E, Freysz E, L'etard J F, Vigneras V and Calais O L 2007 The 15th International Conference on Terahertz Electronics, September 2—7, 2007, Cardiff, UK, p. 970
[17] Yee C M and Mark S S 2009 Appl. Phys. Lett. 94 154104
[18] Rajind M, Abhishek N, Frank C and Daniel M M 2010 Appl. Phys. Lett. 97 131106
[19] Zhao X X, Zhu Q F and Zhang Y 2009 Chin. Phys. B 18 2864 (in Chinese)
[20] Yuan Z H, Wang M and Zhang J 2009 Acta Sin. Quantum Optica 15 260
[21] Mehmet B, Temelkuran B and Ozbay E 2000 Appl. Phys. Lett. 77 24
[22] Chelnokov A, Rowson S and Lourtioz J M 1998 Electron. Lett. 34 1965
[23] N`himec H, Kuvzel P, Garet F and Duvillaret L 2005 Opt. Lett. 30 549
[24] Young L and Cristal E G 1966 IEEE Trans. Microwave Theory Tech. 14 75
[25] Li J S 2010 Opt. Commun. 283 2647
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[3] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[4] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[5] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[6] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[7] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[8] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[9] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[10] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[11] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[12] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[13] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[14] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[15] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
No Suggested Reading articles found!