CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Influence of cesium on the stability of a GaAs photocathode |
Zhang Jun-Ju (张俊举), Chang Ben-Kang (常本康), Fu Xiao-Qian (付小倩), Du Yu-Jie (杜玉杰), Li Biao (李飙), Zou Ji-Jun (邹继军) |
School of Electronic Engineering & Optoelectronic Techniques, Nanjing University of Science and Technology, Nanjing 210094, China |
|
|
Abstract The stability of a reflection-mode GaAs photocathode has been investigated by monitoring the photocurrent and the spectral response at room temperature. We observe the photocurrent of the cathode decaying with time in the vacuum system under the action of Cs current, and find that the Cs atoms residing in the vacuum system are helpful in prolonging the life of the cathode. We examine the evolution and analyse the influence of the barrier on the spectral response of the cathode. Our results support the double dipolar model for the explanation of the negative electron affinity effect.
|
Received: 12 January 2011
Revised: 15 March 2011
Accepted manuscript online:
|
PACS:
|
79.60.Jv
|
(Interfaces; heterostructures; nanostructures)
|
|
72.80.Ey
|
(III-V and II-VI semiconductors)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60678043, 60871012, and 60801036) and the
Research Funding of Nanjing University of Science and Technology (Grant No. 2010ZYTS032). |
Cite this article:
Zhang Jun-Ju (张俊举), Chang Ben-Kang (常本康), Fu Xiao-Qian (付小倩), Du Yu-Jie (杜玉杰), Li Biao (李飙), Zou Ji-Jun (邹继军) Influence of cesium on the stability of a GaAs photocathode 2011 Chin. Phys. B 20 087902
|
[1] |
Drouhin H J, Hermann C and Lampel G 1985 Phys. Rev. B 31 3859
|
[2] |
Vergara G, G'omez L J, Capmany J and Montojo M T 1997 it Vacuum 48 155
|
[3] |
Zhou L W, Li Y, Zhang Z Q, Monastyrski M A and Schelev M Y 2005 it Acta Phys. Sin. 54 3591 (in Chinese)
|
[4] |
Yang Z, Zou J J and Chang B K 2010 Acta Phys. Sin. 59 4290 (in Chinese)
|
[5] |
Zhang Y J, Chang B K, Yang Z, Niu J and Zou J J 2009 Chin. Phys. B 18 4541
|
[6] |
Sommer H 1973 Appl. Opt. 12 90
|
[7] |
Wada T, Nitta T, Nomura T, Miyao M and Hagino M 1990 Jpn. J. Appl. Phys. 29 2087
|
[8] |
Calabrese R, Ciullo G, Guidi V, Lamanna G, Lenisa P, Maciga B, Tecchio L and Yang B 1994 Rev. Sci. Instrum. 65 343
|
[9] |
Pastuszka S, Terekhov A S and Wolf A 1996 Appl. Surf. Sci. 99 361
|
[10] |
Sen P, Pickard D S, Schneider J E, McCord M A, Pease R F, Baum A W and Costello K A 1998 J. Vac. Sci. Technol. B 16 3380
|
[11] |
Liu L, Du Y J, Chang B K and Qian Y S 2006 Appl. Opt. 45 6094
|
[12] |
Zhang Y J, Niu J, Zou J J, Chang B K and Xiong Y J 2010 Appl. Opt. 48 3935
|
[13] |
Antypas G A, Escher J S, Edgecumbe J and Enck R S 1978 J. Appl. Phys. 49 4301
|
[14] |
Liu Z, Sun Y, Peterson S and Pianetta P 2008 Appl. Phys. Lett. 92 241107
|
[15] |
Spicer W E and Herrera G A 1993 Proc. SPIE 2022 18
|
[16] |
Su C Y, Spicer W E and Lindau I 1983 J. Appl. Phys. 54 1413
|
[17] |
Stocker B J 1975 Surf. Sci. 47 501
|
[18] |
Zou J J, Chang B K, Yang Z, Gao P, Qiao J L and Zeng Y P 2007 Acta Phys. Sin. 56 6109 (in Chinese)
|
[19] |
Du X Q and Chang B K 2009 Acta Phys. Sin. 58 8643 (in Chinese)
|
[20] |
Guo L and Hou X 1989 J. Phys. D: Appl. Phys. 22 348
|
[21] |
Du X Q, Chang B K, Zou J J and Li M 2005 Acta Opt. Sin. 25 1411 (in Chinese)
|
[22] |
Zou J J, Chang B K and Yang Z 2007 Acta Phys. Sin. 56 2992 (in Chinese)
|
[23] |
Niu J, Zhang YJ, Chang B K, Yang Z and Xiong Y J 2009 Appl. Opt. 48 5445
|
[24] |
Zou J J, Chang B K, Chen H L and Liu L 2007 J. Appl. Phys. 101 033126
|
[25] |
Zou J J, Chang B K, Yang Z, Zhang Y J and Qiao J L 2009 Acta Phys. Sin. 58 5842 (in Chinese)
|
[26] |
Niu J, Yang Z, Chang B K, Qiao J L and Zhang Y J 2009 Acta Phys. Sin. 58 5002 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|