Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 087902    DOI: 10.1088/1674-1056/20/8/087902
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of cesium on the stability of a GaAs photocathode

Zhang Jun-Ju (张俊举), Chang Ben-Kang (常本康), Fu Xiao-Qian (付小倩), Du Yu-Jie (杜玉杰), Li Biao (李飙), Zou Ji-Jun (邹继军)
School of Electronic Engineering & Optoelectronic Techniques, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  The stability of a reflection-mode GaAs photocathode has been investigated by monitoring the photocurrent and the spectral response at room temperature. We observe the photocurrent of the cathode decaying with time in the vacuum system under the action of Cs current, and find that the Cs atoms residing in the vacuum system are helpful in prolonging the life of the cathode. We examine the evolution and analyse the influence of the barrier on the spectral response of the cathode. Our results support the double dipolar model for the explanation of the negative electron affinity effect.
Keywords:  GaAs photocathode      negative electron affinity      activation      photocathode stability  
Received:  12 January 2011      Revised:  15 March 2011      Accepted manuscript online: 
PACS:  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  72.80.Ey (III-V and II-VI semiconductors)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60678043, 60871012, and 60801036) and the Research Funding of Nanjing University of Science and Technology (Grant No. 2010ZYTS032).

Cite this article: 

Zhang Jun-Ju (张俊举), Chang Ben-Kang (常本康), Fu Xiao-Qian (付小倩), Du Yu-Jie (杜玉杰), Li Biao (李飙), Zou Ji-Jun (邹继军) Influence of cesium on the stability of a GaAs photocathode 2011 Chin. Phys. B 20 087902

[1] Drouhin H J, Hermann C and Lampel G 1985 Phys. Rev. B 31 3859
[2] Vergara G, G'omez L J, Capmany J and Montojo M T 1997 it Vacuum 48 155
[3] Zhou L W, Li Y, Zhang Z Q, Monastyrski M A and Schelev M Y 2005 it Acta Phys. Sin. 54 3591 (in Chinese)
[4] Yang Z, Zou J J and Chang B K 2010 Acta Phys. Sin. 59 4290 (in Chinese)
[5] Zhang Y J, Chang B K, Yang Z, Niu J and Zou J J 2009 Chin. Phys. B 18 4541
[6] Sommer H 1973 Appl. Opt. 12 90
[7] Wada T, Nitta T, Nomura T, Miyao M and Hagino M 1990 Jpn. J. Appl. Phys. 29 2087
[8] Calabrese R, Ciullo G, Guidi V, Lamanna G, Lenisa P, Maciga B, Tecchio L and Yang B 1994 Rev. Sci. Instrum. 65 343
[9] Pastuszka S, Terekhov A S and Wolf A 1996 Appl. Surf. Sci. 99 361
[10] Sen P, Pickard D S, Schneider J E, McCord M A, Pease R F, Baum A W and Costello K A 1998 J. Vac. Sci. Technol. B 16 3380
[11] Liu L, Du Y J, Chang B K and Qian Y S 2006 Appl. Opt. 45 6094
[12] Zhang Y J, Niu J, Zou J J, Chang B K and Xiong Y J 2010 Appl. Opt. 48 3935
[13] Antypas G A, Escher J S, Edgecumbe J and Enck R S 1978 J. Appl. Phys. 49 4301
[14] Liu Z, Sun Y, Peterson S and Pianetta P 2008 Appl. Phys. Lett. 92 241107
[15] Spicer W E and Herrera G A 1993 Proc. SPIE 2022 18
[16] Su C Y, Spicer W E and Lindau I 1983 J. Appl. Phys. 54 1413
[17] Stocker B J 1975 Surf. Sci. 47 501
[18] Zou J J, Chang B K, Yang Z, Gao P, Qiao J L and Zeng Y P 2007 Acta Phys. Sin. 56 6109 (in Chinese)
[19] Du X Q and Chang B K 2009 Acta Phys. Sin. 58 8643 (in Chinese)
[20] Guo L and Hou X 1989 J. Phys. D: Appl. Phys. 22 348
[21] Du X Q, Chang B K, Zou J J and Li M 2005 Acta Opt. Sin. 25 1411 (in Chinese)
[22] Zou J J, Chang B K and Yang Z 2007 Acta Phys. Sin. 56 2992 (in Chinese)
[23] Niu J, Zhang YJ, Chang B K, Yang Z and Xiong Y J 2009 Appl. Opt. 48 5445
[24] Zou J J, Chang B K, Chen H L and Liu L 2007 J. Appl. Phys. 101 033126
[25] Zou J J, Chang B K, Yang Z, Zhang Y J and Qiao J L 2009 Acta Phys. Sin. 58 5842 (in Chinese)
[26] Niu J, Yang Z, Chang B K, Qiao J L and Zhang Y J 2009 Acta Phys. Sin. 58 5002 (in Chinese)
[1] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[2] Neutron activation cross section data library
Xiao-Long Huang(黄小龙), Zhi-Gang Ge(葛智刚), Yong-Li Jin(金永利), Hai-Cheng Wu(吴海成), Xi Tao(陶曦),Ji-Min Wang(王记民), Li-Le Liu(刘丽乐), Yue Zhang(张玥), and Xiao-Fei Wu(吴小飞). Chin. Phys. B, 2022, 31(6): 060102.
[3] Impact of microsecond-pulsed plasma-activated water on papaya seed germination and seedling growth
Deng-Ke Xi(席登科), Xian-Hui Zhang(张先徽), Si-Ze Yang(杨思泽), Seong Shan Yap(叶尚姗), Kenji Ishikawa(石川健治), Masura Hori (堀勝), and Seong Ling Yap(叶尚凌). Chin. Phys. B, 2022, 31(12): 128201.
[4] Small activation entropy bestows high-stability of nanoconfined D-mannitol
Lin Cao(曹琳), Li-Jian Song(宋丽建), Ya-Ru Cao(曹亚茹), Wei Xu(许巍), Jun-Tao Huo(霍军涛), Yun-Zhuo Lv(吕云卓), and Jun-Qiang Wang(王军强). Chin. Phys. B, 2021, 30(7): 076103.
[5] Fabrication of GaAs/SiO2/Si and GaAs/Si heterointerfaces by surface-activated chemical bonding at room temperature
Rui Huang(黄瑞), Tian Lan(兰天), Chong Li(李冲), Jing Li(李景), and Zhiyong Wang(王智勇). Chin. Phys. B, 2021, 30(7): 076802.
[6] Convolutional neural network for transient grating frequency-resolved optical gating trace retrieval and its algorithm optimization
Siyuan Xu(许思源), Xiaoxian Zhu(朱孝先), Ji Wang(王佶), Yuanfeng Li(李远锋), Yitan Gao(高亦谈), Kun Zhao(赵昆), Jiangfeng Zhu(朱江峰), Dacheng Zhang(张大成), Yunlin Chen(陈云琳), and Zhiyi Wei(魏志义). Chin. Phys. B, 2021, 30(4): 048402.
[7] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[8] Enhancement of hydrogenation kinetics and thermodynamic properties of ZrCo1-xCrx (x= 0-0.1) alloys for hydrogen storage
Linling Luo(罗林龄), Xiaoqiu Ye(叶小球), Guanghui Zhang(张光辉), Huaqin Kou(寇化秦), Renjin Xiong(熊仁金), Ge Sang(桑革), Ronghai Yu(于荣海), Dongliang Zhao(赵栋梁). Chin. Phys. B, 2020, 29(8): 088801.
[9] Effect of initial crystallization temperature and surface diffusion on formation of GaAs multiple concentric nanoring structures by droplet epitaxy
Yi Wang(王一), Xiang Guo(郭祥), Jiemin Wei(魏节敏), Chen Yang(杨晨), Zijiang Luo(罗子江), Jihong Wang(王继红), Zhao Ding(丁召). Chin. Phys. B, 2020, 29(4): 046801.
[10] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
[11] Effects of CeO2 and nano-ZrO2 agents on the crystallization behavior and mechanism of CaO-Al2O3-MgO-SiO2-based glass ceramics
Yan Zhang(张艳), Yu Shi(石钰), Xuefeng Zhang(张雪峰), Fengxia Hu(胡凤霞), Jirong Sun(孙继荣), Tongyun Zhao(赵同云), Baogen Shen(沈保根). Chin. Phys. B, 2019, 28(7): 078107.
[12] Temperature-dependent subband mobility characteristics in n-doped silicon junctionless nanowire transistor
Ya-Mei Dou(窦亚梅), Wei-Hua Han(韩伟华), Yang-Yan Guo(郭仰岩), Xiao-Song Zhao(赵晓松), Xiao-Di Zhang(张晓迪), Xin-Yu Wu(吴歆宇), Fu-Hua Yang(杨富华). Chin. Phys. B, 2019, 28(6): 066804.
[13] Coexistence and local Mittag-Leffler stability of fractional-order recurrent neural networks with discontinuous activation functions
Yu-Jiao Huang(黄玉娇), Shi-Jun Chen(陈时俊), Xu-Hua Yang(杨旭华), Jie Xiao(肖杰). Chin. Phys. B, 2019, 28(4): 040701.
[14] Defects and electrical properties in Al-implanted 4H-SiC after activation annealing
Yi-Dan Tang(汤益丹), Xin-Yu Liu(刘新宇), Zheng-Dong Zhou(周正东), Yun Bai(白云), Cheng-Zhan Li(李诚瞻). Chin. Phys. B, 2019, 28(10): 106101.
[15] Transport spectroscopy through dopant atom array in silicon junctionless nanowire transistors
Xiao-Song Zhao(赵晓松), Wei-Hua Han(韩伟华), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华). Chin. Phys. B, 2018, 27(9): 097310.
No Suggested Reading articles found!