Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 088801    DOI: 10.1088/1674-1056/ab9289

Enhancement of hydrogenation kinetics and thermodynamic properties of ZrCo1-xCrx (x= 0-0.1) alloys for hydrogen storage

Linling Luo(罗林龄)1, Xiaoqiu Ye(叶小球)1, Guanghui Zhang(张光辉)2, Huaqin Kou(寇化秦)2, Renjin Xiong(熊仁金)2, Ge Sang(桑革)2, Ronghai Yu(于荣海)3, Dongliang Zhao(赵栋梁)4
1 Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907, China;
2 Institute of Materials, China Academy of Engineering Physics, Mianyang 621900, China;
3 School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
4 Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081, China
Abstract  The vacuum arc melting method was used to prepare ZrCo1-xCrx (x=0, 0.025, 0.05, 0.075, 0.1) alloys. Afterward, the crystal structure, hydrogenation kinetics, thermodynamic properties, and disproportionation performance of ZrCo1-xCrx (x=0-0.1) alloys were investigated. The x-ray diffraction spectra demonstrated that ZrCo1-xCrx (x=0-0.1) alloys contained ZrCo and ZrCo2 phases, and their corresponding hydrides consisted of ZrCoH3 and ZrH phases. The activation behaviors of Cr-substituted samples were significantly promoted. The activation time of ZrCo was 7715 s while that of ZrCo0.9Cr0.1 was 195 s. The improvement of kinetics can be attributed to the catalytic hydrogenation of ZrCr2. The activation energy for the hydrogenation of ZrCo was 44.88-kJ·mol-1 H2 and decreased to 40.34-kJ·mol-1 H2 for ZrCo0.95Cr0.05. The plateau pressure and width of the pressure-composition-temperature curves decreased slightly as Cr content increased. The extent of disproportionation of ZrCo was 83.68% after being insulated at 798 K for 10 h and decreased slightly to 70.52% for ZrCo0.9Cr0.1. The improvement of anti-disproportionation performance can be attributed to increase in the activation energy of disproportionation from 167.46-kJ·mol-1 H2 for ZrCo to 168.28-kJ·mol-1 H2 for ZrCo0.95Cr0.05.
Keywords:  hydrogen storage      ZrCo      Cr substitution      anti-disproportionation performance      activation behaviors  
Received:  08 February 2020      Revised:  25 April 2020      Accepted manuscript online: 
PACS:  88.30.R- (Hydrogen storage)  
  89.30.Jj (Nuclear fusion power)  
  81.05.Bx (Metals, semimetals, and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21573200, 2017YFE0301505, 21601165, 21401173, 21573200, and 51731002).
Corresponding Authors:  Ge Sang     E-mail:

Cite this article: 

Linling Luo(罗林龄), Xiaoqiu Ye(叶小球), Guanghui Zhang(张光辉), Huaqin Kou(寇化秦), Renjin Xiong(熊仁金), Ge Sang(桑革), Ronghai Yu(于荣海), Dongliang Zhao(赵栋梁) Enhancement of hydrogenation kinetics and thermodynamic properties of ZrCo1-xCrx (x= 0-0.1) alloys for hydrogen storage 2020 Chin. Phys. B 29 088801

[1] Shmayda W T, Heics A G and Kherani N P 1990 J. Less-common Metal 162 117
[2] Li G, Zhou H and Gao T 2012 J. Nucl. Mater. 424 220
[3] Nagasaki T, Konishi S, Katsuta H and Naruse Y 1986 J. Fusion Technol. 9 506
[4] Konishi S, Nagasaki T, Yokokara N and Naruse Y 1989 Fusion Eng. Des. 10 355
[5] Devillers M, Sirch M, Bredendiek-Kaemper S and Penzhorn R D 1990 J. Chem. Mater. 2 255
[6] Maynard K J, Shmayda W T and Heics A G 1995 J. Fusion Technol. 28 1391
[7] Chattaraj D, Parida S C, Dash S and Majumder C 2012 Int. J. Hydrogen Energy 37 18952
[8] Peng L X, Jiang C L, Xu Q Y and Wu X C 2013 Fusion Eng. Des. 88 299
[9] Devillers M, Sirch M and Penzhorn R D 1992 Chem. Mater. 4 631
[10] Konishi S, Nagasaki T and Okuno K 1995 J. Nucl. Mater. 233 294
[11] Kou H Q, Luo W H, Tang T, Huang Z Y, Sang G, Wang H, Chen C A, Zhang G H, Bao J C and Xue Y 2018 Int. J. Hydrogen Energy 43 16169
[12] Kou H Q, He H, Luo W H, Tang T, Huang Z Y, Sang G, Zhang G H, Wang H, Shi Y and Chen C A 2018 Int. J. Hydrogen Energy 43 322
[13] Zlotea C, Sow M A, Gustav E, Couzinie J, Perriere L, Guillot I, Bourgon J, Moller K T, Jensen T R, Akiba E and Sahlberg M 2019 J. Alloys Compd. 775 667
[14] Ishikawa K and Yonehara K 2018 J. Alloys Compd. 749 634
[15] Zhang G H, Sang G, Xiong R J, Kou H Q, Liu K Z and Luo W H 2015 Int. J. Hydrogen Energy 40 6582
[16] Zhao Y M, Li R F, Tang R H, Li B Y, Yu R H, Liu W, Kou H Q and Meng J B 2014 J. Energy Chem. 23 9
[17] Jat R A, Parida S C, Agarwal R and Kulkarni S G 2013 Int. J. Hydrogen Energy 38 1490
[18] Weng C C, Xiao X Z, Huang X, Jiang F L, Yao Z D, Li S Q, Ge H W and Chen L X 2017 Int. J. Hydrogen Energy 42 28498
[19] Yao Z D, Xiao X Z, Liang Z, Kou H Q, Luo W H, Chen C A, Jiang L J and Chen L X 2019 J. Alloys Compd. 784 1062
[20] Jat R A, Singh R, Parida S C, Das A, Agarwal R, Mukerjee S and Ramakumar K L 2015 Int. J. Hydrogen Energy 40 5135
[21] Konishi S, Nagasaki T, Hayashi T and Okuno K 1995 J. Nucl. Mater. 223 300
[22] Jat R A, Singh R, Pati S, Sastry PU, Das A, Agarwal R and Padida S C 2017 Int. J. Hydrogen Energy 42 8089
[23] Luo L L, Ye X Q, Zhao C, Zhang G H, Kou H Q, Xiong R J, Sang G and Han T 2020 Int. J. Hydrogen Energy 45 2989
[24] Liang Z Q, Xiao X Z, Yao Z D, Kou H Q, Luo W H, Chen C A and Chen L X 2019 Int. J. Hydrogen Energy 44 28242
[25] Xu S F, Wang F, Tang W K, Wang Y B and Yu R H 2018 Int. J. Hydrogen Energy 43 839
[26] Zhang G H 2015 Study on preparation and mechanism of ZrCo-based tritium storage alloys of anti-hydrogen induced disproportionation (Anhui:University of Science and Technology of China) (in Chinese)
[27] Zhang K, Wang F, Zeng X G, Zhang B J and Kou H Q 2020 Int. J. Hydrogen Energy 45 9877
[28] You Y W, Yu J Y, Yuan H, Xu Y C, Wu X B, Sun J J, Wang J H, Fang Q F and Liu C S 2020 Int. J. Hydrogen Energy 45 14028
[29] Wang L S, Ding J, Huang X, Song K, Liu B and Zeng X G 2018 Int. J. Hydrogen Energy 43 13328
[30] Wang F, Li R F, Ding C P, Tang W K, Wang Y B, Xu S M, Yu R H and Wang Z M 2017 Int. J. Hydrogen Energy 42 11510
[31] Yoo H, Ko J, Yun S, Chang M, Kang H, Kim W and Ju H 2012 Int. J. Hydrogen Energy 38 6226
[32] Wang F, Li R F, Ding C P, Wan J, Yu R H and Wang Z M 2016 Int. J. Hydrogen Energy 41 17421
[33] Kou H Q, He H, Luo W H, Tang T, Huang Z Y, Wang H, Bao J C, Xue Y, Pei S H and Liu W D 2019 Fusion Eng. Des. 138 68
[34] Kou H Q, Luo W H, Huang Z Y, Sang G, Hu C W, Chen C A, Zhang G H, Luo D L, Liu M and Zheng S T 2016 Int. J. Hydrogen Energy 41 10811
[35] Wang Q Q, Kong X G, Han H B, Sang G, Zhang G H and Gao T 2019 Appl. Surf. Sci. 483 383
[36] Lv L J 2016 Study on improving properties of LaNi4.25Al0.75 and ZrCo alloys for absorption and storage of tritium in Thorium-based Molten Salt Reactor (Shanghai:The University of Chinese Academy of Sciences) (in Chinese)
[37] Yao Z D, Xiao X X, Chen L X and Liang Z Q 2018 Chinese Patent CN108330323A (in Chinese)
[38] 1990 Plus updates Binary alloy phase diagrams, 2nd edn. (ASM International) The Materials Information Society
[39] 1992 Alloy Phase Diagrams, Volume 3, ASM Handbook, The Materials Information Company
[40] Jacob I and Polak M 1981 J. Mater. Res. Bull. 16 1311
[41] Schlapbach L 1982 J. Alloys Compd. 89 37
[42] Edalati K, Matsuo M, Emami H, Itano S, Alhamidi A, Staykov A T, Smith D J, Orimo S, Akiba E and Horita Z 2016 Scr. Mater. 124 108
[43] Zander D, Talgutelmacher E, Jastrow L, Koster U and Eliezer D 2003 J. Alloys Compd. 356 654
[44] Jat R A, Parida S C, Nuwad J, Agarwal R and Kulkarni S G 2013 J. Therm. Anal. Calorim. 112 37
[45] Li Y T, Zhang L X, Zhang Q G, Fang F, Sun D L, Li K Z, Wang H, Ouyang L Z and Zhu M 2014 J. Phys. Chem. C 118 23635
[46] Liu T, Cao Y R, Qin C G, Chou W S and Li X G 2014 J. Power Sources 246 277
[47] Qi Y, Ju X, Wan C B, Qiu J, Xin Y, Wang S M, Liu X P and Jiang L J 2010 Int. J. Hydrogen Energy 35 2931
[48] Shim M, Chung H, Paek S, Lee M, Kim K, Yim S, Ahn D, Kim C and Yoshida H 2006 J. Korean Phys. Soc. 49 S369
[49] Hara M, Okabe T, Mori K and Watanabe K 2000 J. Fusion Eng. Des. 49 831
[50] Zhang Y, Tian Q F, Zhang J, Liu S S and Sun L X 2009 J. Phys. Chem. C 113 18424
[51] Liu Y F, Zhong K, Luo K, Gao X M, Pan H G, Wang Q D 2009 J. Am. Chem. Soc. 131 1862
[52] Shao J 2015 Study on the modification and corresponding mechanisms of lithium borohvdride-based materials for hydrogen storage (Hangzhou:Zhejiang University) (in Chinese)
[1] Sodium decorated net-Y nanosheet for hydrogen storage and adsorption mechanism: A first-principles study
Yunlei Wang(王云蕾), Yuhong Chen(陈玉红), Yunhui Wang(王允辉). Chin. Phys. B, 2020, 29(1): 016801.
[2] An overview of progress in Mg-based hydrogen storage films
Lyu Jinzhe, Andrey M Lider, Viktor N Kudiiarov. Chin. Phys. B, 2019, 28(9): 098801.
[3] Li adsorption on monolayer and bilayer MoS2 as an ideal substrate for hydrogen storage
Cheng Zhang(张诚), Shaolong Tang(唐少龙), Mingsen Deng(邓明森), Youwei Du(都有为). Chin. Phys. B, 2018, 27(6): 066103.
[4] Structural, electronic, elastic, and thermal properties of CaNiH3 perovskite obtained from first-principles calculations
S Benlamari, H Bendjeddou, R Boulechfar, S Amara Korba, H Meradji, R Ahmed, S Ghemid, R Khenata, S Bin Omran. Chin. Phys. B, 2018, 27(3): 037104.
[5] Effect of metal catalyst on the mechanism of hydrogen spillover in three-dimensional covalent-organic frameworks
Xiu-Ying Liu(刘秀英), Jing-Xin Yu(于景新), Xiao-Dong Li(李晓东), Gui-Cheng Liu(刘桂成), Xiao-Feng Li(李晓凤), Joong-Kee Lee. Chin. Phys. B, 2017, 26(2): 027302.
[6] Theoretical study of molecular hydrogen and spiltover hydrogen storage on two-dimensional covalent-organic frameworks
Liu Xiu-Ying (刘秀英), He Jie (何杰), Yu Jing-Xin (于景新), Li Zheng-Xin (栗正新), Fan Zhi-Qin (樊志琴). Chin. Phys. B, 2014, 23(6): 067303.
[7] Na decorated B6 cluster and its hydrogen storage properties
Ruan Wen (阮文), Wu Dong-Lan (伍冬兰), Luo Wen-Lang (罗文浪), Yu Xiao-Guang (余晓光), Xie An-Dong (谢安东). Chin. Phys. B, 2014, 23(2): 023102.
[8] First-principles study of hydrogen adsorption on titanium-decorated single-layer and bilayer graphenes
Pan Hong-Zhe (潘洪哲), Wang Yong-Long (王永龙), He Kai-Hua (何开华), Wei Ming-Zhen (魏明真), Ouyang Yu (欧阳雨), Chen Li (陈丽). Chin. Phys. B, 2013, 22(6): 067101.
[9] Post-annealing effect on the structural and mechanical properties of multiphase zirconia films deposited by a plasma focus device
I. A. Khan, R. S. Rawat, R. Ahmad, M. A. K. Shahid. Chin. Phys. B, 2013, 22(12): 127306.
[10] Hydrogen storage of Mg1-xMxH2 (M=Ti, V, Fe) studied using first-principles calculations
M. Bhihi, M. Lakhal, H. Labrim, A. Benyoussef, A. El Kenz, O. Mounkachi, E. K. Hlil. Chin. Phys. B, 2012, 21(9): 097501.
[11] High volumetric hydrogen density phases of magnesium borohydride at high-pressure: A first-principles study
Fan Jing (范靖), Bao Kuo (包括), Duan De-Fang (段德芳), Wang Lian-Cheng (汪连城), Liu Bing-Bing (刘冰冰), Cui Tian (崔田). Chin. Phys. B, 2012, 21(8): 086104.
[12] Hydrogen storage capabilities of the most stable isomers of NanBm (m+n=6) clusters
Ruan Wen(阮文), Xie An-Dong(谢安东), Yu Xiao-Guang(余晓光), and Wu Dong-Lan(伍冬兰). Chin. Phys. B, 2011, 20(4): 043104.
[13] Electronic structures and thermodynamic stabilities of aluminum-based deuterides from first principles calculations
Ye Xiao-Qiu(叶小球), Luo De-Li(罗德礼), Sang Ge(桑革), and Ao Bing-Yun(敖冰云). Chin. Phys. B, 2011, 20(1): 017102.
[14] Hydrogen storage in BC3 composite single-walled nanotube:a combined density functional theory and Monte Carlo investigation
Liu Xiu-Ying(刘秀英), Wang Chao-Yang(王朝阳), Tang Yong-Jian(唐永建), Sun Wei-Guo(孙卫国), and Wu Wei-Dong (吴卫东). Chin. Phys. B, 2010, 19(3): 036103.
[15] First-principles calculations of elasticity and thermodynamic properties of LaNi5 crystal under pressure
Chen Dong(陈东), Chen Jing-Dong(陈敬东), Zhao Li-Hua(赵丽华), Wang Chun-Lei(王春雷), Yu Ben-Hai(余本海), and Shi De-Heng(施德恒). Chin. Phys. B, 2009, 18(2): 738-743.
No Suggested Reading articles found!