Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 066804    DOI: 10.1088/1674-1056/28/6/066804

Temperature-dependent subband mobility characteristics in n-doped silicon junctionless nanowire transistor

Ya-Mei Dou(窦亚梅)1,2, Wei-Hua Han(韩伟华)1,2, Yang-Yan Guo(郭仰岩)1,2, Xiao-Song Zhao(赵晓松)1,2, Xiao-Di Zhang(张晓迪)1,2, Xin-Yu Wu(吴歆宇)1,2, Fu-Hua Yang(杨富华)1,2,3
1 Engineering Research Center for Semiconductor Integration Technology & Beijing Engineering Center of Semiconductor Micro-Nano Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

We have investigated the temperature-dependent effective mobility characteristics in impurity band and conduction subbands of n-doped silicon junctionless nanowire transistors. It is found that the electron effective mobility of the first subband in 2-fold valleys is higher than that of the second subband in 4-fold valleys. There exists a maximum value for the effective subband mobilities at low temperatures, which is attributed to the increase of thermally activated electrons from the ionized donors in the impurity band. The experimental results indicate that the effective subband mobility is temperature-dependent on the electron interactions by thermal activation, impurity scattering, and intersubband scattering.

Keywords:  effective subband mobility      thermal activation      Coulomb scattering      silicon nanowire transistor  
Received:  06 March 2019      Revised:  29 March 2019      Accepted manuscript online: 
PACS:  68.65.La (Quantum wires (patterned in quantum wells))  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
  05.60.Gg (Quantum transport)  
  11.40.-q (Currents and their properties)  

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0200503).

Corresponding Authors:  Wei-Hua Han     E-mail:

Cite this article: 

Ya-Mei Dou(窦亚梅), Wei-Hua Han(韩伟华), Yang-Yan Guo(郭仰岩), Xiao-Song Zhao(赵晓松), Xiao-Di Zhang(张晓迪), Xin-Yu Wu(吴歆宇), Fu-Hua Yang(杨富华) Temperature-dependent subband mobility characteristics in n-doped silicon junctionless nanowire transistor 2019 Chin. Phys. B 28 066804

[1] Niquet Y M, Delerue C and Krzeminski C 2012 Nano Lett. 12 3545
[2] Cassé M, Tachi K, Thiele S and Ernst T 2010 Appl. Phys. Lett. 96 123506
[3] Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Kelleher A M, McCarthy B and Murphy R 2010 Nat. Nanotechnol. 5 225
[4] Yi K S, Trivedi K, Floresca H C, Yuk H, Hu W and Kim M J 2011 Nano Lett. 11 5465
[5] Yamada S and Makimoto T 1990 Appl. Phys. Lett. 57 1022
[6] Colinge J P, Quinn A J, Floyd L, Redmond G, Alderman J C, Xiong W Z, Cleavelin C R, Schulz T, Schruefer K, Knoblinger G and Patruno P 2006 IEEE Electron Dev. Lett. 27 120
[7] Fuechsle M, Miwa J A, Mahapatra S, Ryu H, Lee S, Warschkow O, Hollenberg L C L, Klimeck G and Simmons M Y 2012 Nat. Nanotechnol. 7 242
[8] Ma L H, Han W H, Wang H, Yang X and Yang F H 2015 IEEE Electron Dev. Lett. 36 941
[9] Ford A C, Ho J C, Chueh Y L, Tseng Y C, Fan Z, Guo J, Bokor J and Javey A 2009 Nano Lett. 9 360
[10] Li X, Han W, Wang H, Ma L, Zhang Y, Du Y and Yang F 2013 Appl. Phys. Lett. 102 223507
[11] Cui Y, Duan X F, Hu J T and Lieber C M 2000 J. Phys. Chem. B 104 5213
[12] Rustagi S C, Singh N, Lim Y F, Zhang G, Wang S, Lo G Q, Balasubramanian N and Kwong D L 2007 IEEE Electron Dev. Lett. 28 909
[1] Role of remote Coulomb scattering on the hole mobility at cryogenic temperatures in SOI p-MOSFETs
Xian-Le Zhang(张先乐), Peng-Ying Chang(常鹏鹰), Gang Du(杜刚), Xiao-Yan Liu(刘晓彦). Chin. Phys. B, 2020, 29(3): 038505.
[2] Single-electron transport through single and coupling dopant atoms in silicon junctionless nanowire transistor
Xiao-Di Zhang(张晓迪), Wei-Hua Han(韩伟华), Wen Liu(刘雯), Xiao-Song Zhao(赵晓松), Yang-Yan Guo(郭仰岩), Chong Yang(杨冲), Jun-Dong Chen(陈俊东), Fu-Hua Yang(杨富华). Chin. Phys. B, 2019, 28(12): 127302.
[3] Transport spectroscopy through dopant atom array in silicon junctionless nanowire transistors
Xiao-Song Zhao(赵晓松), Wei-Hua Han(韩伟华), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华). Chin. Phys. B, 2018, 27(9): 097310.
[4] Thermal activation of magnetization in Pr2Fe14B ribbons
Li Zhu-Bai (李柱柏), Shen Bao-Gen (沈保根), Niu E (钮萼), Liu Rong-Ming (刘荣明), Zhang Ming (章明), Sun Ji-Rong (孙继荣). Chin. Phys. B, 2013, 22(11): 117503.
[5] Thermal activation of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height
Ru Guo-Ping(茹国平), Yu Rong(俞融), Jiang Yu-Long(蒋玉龙), and Ruan Gang(阮刚). Chin. Phys. B, 2010, 19(9): 097304.
[6] Thermally activated magnetization reversal in magnetic tunnel junctions
Zhou Guang-Hong(周广宏), Wang Yin-Gang(王寅岗), Qi Xian-Jin(祁先进), Li Zi-Quan(李子全), and Chen Jian-Kang(陈建康). Chin. Phys. B, 2009, 18(2): 790-794.
[7] Effect of interface-roughness scattering on mobility degradation in SiGe p-MOSFETs with a high-k dielectric/SiO2 gate stack
Zhang Xue-Feng(张雪锋), Xu Jing-Ping (徐静平), Lai Pui-To(黎沛涛), Li Chun-Xia(李春霞), and Guan Jian-Guo(官建国). Chin. Phys. B, 2007, 16(12): 3820-3826.
No Suggested Reading articles found!