CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic and magnetic structures of V-doped zinc blende Zn1-xVxNyO1-y and Zn1-xVxPyO1-y |
N. Mamounia), M. Belaicheb)e), A. Benyoussef,a)e), A. El Kenza)†, H. Ez-Zahraouya), M. Loulidia), E. H. Saidic)e) and E. K. Hlild) |
a Laboratoire de Magnétisme et de Physique des Hautes Energies Département de Physique, Associé au CNRST,URAC, B. P. 1014, Faculté des Sciences, Rabat, Morocco; b Laboratoire de Magnétisme, Matériaux Magnétiques, Micro-ondes et Céramique, ENS, Rabat, Morocco; c Laboratoire de Physique des Hautes Energies Département de Physique, B. P. 1014, Faculté des Sciences, Rabat, Morocco; d Institut Néel, MCMF-UJF, C. N. R. S, B. P. 166, 38042 Grenoble Cedex, France; e INANOTECH, Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat, Morocco |
|
|
Abstract Electronic and magnetic structures of zinc blende ZnO doped with V impurities are studied by first-principles calculations based on the Korringa—Kohn—Rostoker (KKR) method combined with the coherent potential approximation (CPA). Calculations for the substitution of O by N or P are performed and the magnetic moment is found to be sensitive to the N or P content. Furthermore, the system exhibits a half-metallic band structure accompanied by the broadening of vanadium bands. The mechanism responsible for ferromagnetism is also discussed and the stability of the ferromagnetic state compared with that of the paramagnetic state is systematically investigated by calculating the total energy difference between them by using supercell method.
|
Received: 07 November 2010
Revised: 10 March 2011
Accepted manuscript online:
|
PACS:
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
71.20.Eh
|
(Rare earth metals and alloys)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the National Natural Sciencehs*.8mm |
Cite this article:
N. Mamouni, M. Belaiche, A. Benyoussef, A. El Kenz, H. Ez-Zahraouy, M. Loulidi, E. H. Saidi and E. K. Hlil Electronic and magnetic structures of V-doped zinc blende Zn1-xVxNyO1-y and Zn1-xVxPyO1-y 2011 Chin. Phys. B 20 087504
|
[1] |
Kind H, Yan H Q, Messer B, Law M and Yang P 2002 Adv. Mater. 14 158
|
[2] |
Park W I, Yi G C, Kim J W and Park S M 2003 Appl. Phys. Lett. 82 4358
|
[3] |
Park W I and Yi G C 2004 Adv. Mater. 16 87
|
[4] |
Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S and Iye Y 1996 Appl. Phys. Lett. 69 363
|
[5] |
Bl"ochl P E, Jepsen O and Andersen O K 1994 Phys. Rev. B 49 16223
|
[6] |
Frisch M J et al. 1998 GAUSSIAN 98 Revision A.7 (Pittsburgh: Gaussian, Inc.)
|
[7] |
Becke A D 1988 Phys. Rev. A 38 3098
|
[8] |
Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533
|
[9] |
Burke K, Perdew J P and Wang Y 1998 Electronic Density Functional Theory: Recent Progress and New Directions ed. Dobson J F, Vignale G and Das M P (New York: Plenum)
|
[10] |
Yao K L, Gao G Y, Liu Z L and Zhu L 2005 Solid State Commun. 133, 301
|
[11] |
Sieberer M, Redinger J, Khmelevskyi S and Mohn P 2006 Phys. Rev. B 73 024404
|
[12] |
Yao K L, Jiang J L, Liu Z L and Gao G Y 2006 Phys. Lett. A 359 326
|
[13] |
Pearton S J, Norton D P, Ip K, Heo Y W and Steiner T 2004 J. Vac. Sci. Technol. B 22 932
|
[14] |
Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
|
[15] |
Sato K and Katayama-Yoshida H 2000 Jpn. J. Appl. Phys. Part 2 Lett. 39 L555
|
[16] |
Diaconu M, Schmidt H, Hochmuth H, Lorenz M, Benndorf G, Lenzner J, Spemann D, Setzer A, Nielsen K W, Esquinazi P and Grundmann M 2005 Thin Solid Films 486 117
|
[17] |
Choi C H and Kim S H 2007 Thin Solid Films 515 2864
|
[18] |
Bacaksiz E, Aksu S, Basol B M, Altunbacs M, Parlak M and Yanmaz E 2008 Thin Solid Films 516 7899
|
[19] |
Pivin J C, Socol G, Mihailescu I, Berthet P, Singh F, Patel M K and Vincent L 2008 Thin Solid Films 517 916
|
[20] |
An S J, Park W I, Yi G C and Cho S 2002 Appl. Phys. A 74 509
|
[21] |
Barnes T M, Leaf J, Fry C and Wolden C A 2005 J. Crystal Growth 274 412
|
[22] |
Craciun V, Amirhaghi S, Craciun D, Elders J, Gardeniers J and Boyd I W 1995 Appl. Surf. Sci. 86 99
|
[23] |
Kang D J, Kim J S, Jeong S W, Roh Y, Jeong S H and Boo J H 2005 Thin Solid Films 475 160
|
[24] |
Ye Z Z and Tang J F 1989 Appl. Opt. 28 2817
|
[25] |
Zhang F J, Vollmer A, Zhang J, Xu Z, Rabe J P and Koch N 2007 Org. Electron. 8 606
|
[26] |
Ma Q B, Ye Z Z, He H P, Wang J R, Zhu L P and Zhao B H 2008 Mater. Charact. 59 124
|
[27] |
Schlenker E, Bakina A, Postelsa B, Mofor A C, Kreyea M, Ronningb C, Sieversc S, Albrecht M, Siegner U, Klingd R and Waaga A 2007 Superlattices and Microstructures 42 236
|
[28] |
Fukumura T, Jin Z W, Ohtomo A, Koinuma H and Kawasaki M 1999 Appl. Phys. Lett. 75 3366
|
[29] |
Jin Z W, Murakami M, Fukumura T, Matsumoto Y, Ohtomo A, Kawasaki M and Koinuma H 2000 J. Crystal Growth 214 55
|
[30] |
Meyerheim H L, Tusche C, Ernst A, Ostanin S, Maznichenko I V, Mohseni K, Jedrecy N, Zegenhagen J, Roy J, Mertig I and Kirschner J 2009 Phys. Rev. Lett. 102 156102
|
[31] |
Naydenova T, Atanasov P, Koleva M, Nedialkov N, Perriere J, Defourneau D, Fukuoka H, Obara M, Baumgart C H, Zhou S H and Schmidt H 2010 Thin Solid Films doi: 10.1016/j.tsf.2010.04.034
|
[32] |
Yamamoto T and Katayama-Yoshida H 1999 Jpn. J. Appl. Phys. 38 L166
|
[33] |
Joseph M, Tabata H and Kawai T 1999 Jpn. J. Appl. Phys. 38 L1205
|
[34] |
Heo Y W, Ivill M P, Ip K, Norton D P, Pearton S J, Kelly J G, Rairigh R, Hebard A F and Steiner T 2004 Appl. Phys. Lett. 84 2292
|
[35] |
Mounkachi O, Benyoussef A, El Kenz A, Saidi E H and Hlil E K 2009 J. Appl. Phys. 106 093905
|
[36] |
Mounkachi O, Benyoussef A, El Kenz A, Saidi E H and Hlil E K 2008 J. Magn. Magn. Mater. 320 2760
|
[37] |
Mounkachi O, Benyoussef A, El Kenz A, Saidi E H and Hlil E K 2009 Physica A 388 3433
|
[38] |
Fakhim Lamrani A, Belaiche M, Benyoussef A, El Kenz A and Saidi E H 2010 J. Magn. Magn. Mater. 322 454
|
[39] |
Cho Y M, Choo W K, Kim H, Kim D and Ihm Y E 2002 Appl. Phys. Lett. 80 3358
|
[40] |
Akai H 1989 J. Phys.: Condens. Matter 1 8045
|
[41] |
Akai H 1998 Phys. Rev. Lett. 81 3002
|
[42] |
Akai H and Dederichs P H 1993 Phys. Rev. B 47 8739
|
[43] |
Moruzzi V L, Janak J F and Williams A R 1978 Calculated Properties of Metals (New York: Pergamon)
|
[44] |
Akai H http://sham.phys.sci.osaka-u.ac.jp/kkr/
|
[45] |
Lei T, Moustakas T D, Graham R J, He Y and Berkowitz S J 1992 J. Appl. Phys. 71 4933
|
[46] |
Gyorffy B L, Pindor A J, Staunton J, Stocks G M and Winter H 1985 J. Phys. F: Met. Phys. 15 1337
|
[47] |
Lany S and Zunger A 2009 Modelling Simul. Mater. Sci. Eng. 17 084002
|
[48] |
Lany S and Zunger A 2010 Phys. Rev. B 81 113201
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|