Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 087504    DOI: 10.1088/1674-1056/20/8/087504
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic and magnetic structures of V-doped zinc blende Zn1-xVxNyO1-y and Zn1-xVxPyO1-y

N. Mamounia), M. Belaicheb)e), A. Benyoussef,a)e), A. El Kenza)†, H. Ez-Zahraouya), M. Loulidia), E. H. Saidic)e) and E. K. Hlild)
a Laboratoire de Magnétisme et de Physique des Hautes Energies Département de Physique, Associé au CNRST,URAC, B. P. 1014, Faculté des Sciences, Rabat, Morocco; b Laboratoire de Magnétisme, Matériaux Magnétiques, Micro-ondes et Céramique, ENS, Rabat, Morocco; c Laboratoire de Physique des Hautes Energies Département de Physique, B. P. 1014, Faculté des Sciences, Rabat, Morocco; d Institut Néel, MCMF-UJF, C. N. R. S, B. P. 166, 38042 Grenoble Cedex, FranceINANOTECH, Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat, Morocco
Abstract  Electronic and magnetic structures of zinc blende ZnO doped with V impurities are studied by first-principles calculations based on the Korringa—Kohn—Rostoker (KKR) method combined with the coherent potential approximation (CPA). Calculations for the substitution of O by N or P are performed and the magnetic moment is found to be sensitive to the N or P content. Furthermore, the system exhibits a half-metallic band structure accompanied by the broadening of vanadium bands. The mechanism responsible for ferromagnetism is also discussed and the stability of the ferromagnetic state compared with that of the paramagnetic state is systematically investigated by calculating the total energy difference between them by using supercell method.
Keywords:  ab initio calculations      density of states      magnetic moment doping      diluted magnetic semiconductors  
Received:  07 November 2010      Revised:  10 March 2011      Accepted manuscript online: 
PACS:  75.50.Pp (Magnetic semiconductors)  
  71.20.Eh (Rare earth metals and alloys)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Sciencehs*.8mm

Cite this article: 

N. Mamouni, M. Belaiche, A. Benyoussef, A. El Kenz, H. Ez-Zahraouy, M. Loulidi, E. H. Saidi and E. K. Hlil Electronic and magnetic structures of V-doped zinc blende Zn1-xVxNyO1-y and Zn1-xVxPyO1-y 2011 Chin. Phys. B 20 087504

[1] Kind H, Yan H Q, Messer B, Law M and Yang P 2002 Adv. Mater. 14 158
[2] Park W I, Yi G C, Kim J W and Park S M 2003 Appl. Phys. Lett. 82 4358
[3] Park W I and Yi G C 2004 Adv. Mater. 16 87
[4] Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S and Iye Y 1996 Appl. Phys. Lett. 69 363
[5] Bl"ochl P E, Jepsen O and Andersen O K 1994 Phys. Rev. B 49 16223
[6] Frisch M J et al. 1998 GAUSSIAN 98 Revision A.7 (Pittsburgh: Gaussian, Inc.)
[7] Becke A D 1988 Phys. Rev. A 38 3098
[8] Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533
[9] Burke K, Perdew J P and Wang Y 1998 Electronic Density Functional Theory: Recent Progress and New Directions ed. Dobson J F, Vignale G and Das M P (New York: Plenum)
[10] Yao K L, Gao G Y, Liu Z L and Zhu L 2005 Solid State Commun. 133, 301
[11] Sieberer M, Redinger J, Khmelevskyi S and Mohn P 2006 Phys. Rev. B 73 024404
[12] Yao K L, Jiang J L, Liu Z L and Gao G Y 2006 Phys. Lett. A 359 326
[13] Pearton S J, Norton D P, Ip K, Heo Y W and Steiner T 2004 J. Vac. Sci. Technol. B 22 932
[14] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[15] Sato K and Katayama-Yoshida H 2000 Jpn. J. Appl. Phys. Part 2 Lett. 39 L555
[16] Diaconu M, Schmidt H, Hochmuth H, Lorenz M, Benndorf G, Lenzner J, Spemann D, Setzer A, Nielsen K W, Esquinazi P and Grundmann M 2005 Thin Solid Films 486 117
[17] Choi C H and Kim S H 2007 Thin Solid Films 515 2864
[18] Bacaksiz E, Aksu S, Basol B M, Altunbacs M, Parlak M and Yanmaz E 2008 Thin Solid Films 516 7899
[19] Pivin J C, Socol G, Mihailescu I, Berthet P, Singh F, Patel M K and Vincent L 2008 Thin Solid Films 517 916
[20] An S J, Park W I, Yi G C and Cho S 2002 Appl. Phys. A 74 509
[21] Barnes T M, Leaf J, Fry C and Wolden C A 2005 J. Crystal Growth 274 412
[22] Craciun V, Amirhaghi S, Craciun D, Elders J, Gardeniers J and Boyd I W 1995 Appl. Surf. Sci. 86 99
[23] Kang D J, Kim J S, Jeong S W, Roh Y, Jeong S H and Boo J H 2005 Thin Solid Films 475 160
[24] Ye Z Z and Tang J F 1989 Appl. Opt. 28 2817
[25] Zhang F J, Vollmer A, Zhang J, Xu Z, Rabe J P and Koch N 2007 Org. Electron. 8 606
[26] Ma Q B, Ye Z Z, He H P, Wang J R, Zhu L P and Zhao B H 2008 Mater. Charact. 59 124
[27] Schlenker E, Bakina A, Postelsa B, Mofor A C, Kreyea M, Ronningb C, Sieversc S, Albrecht M, Siegner U, Klingd R and Waaga A 2007 Superlattices and Microstructures 42 236
[28] Fukumura T, Jin Z W, Ohtomo A, Koinuma H and Kawasaki M 1999 Appl. Phys. Lett. 75 3366
[29] Jin Z W, Murakami M, Fukumura T, Matsumoto Y, Ohtomo A, Kawasaki M and Koinuma H 2000 J. Crystal Growth 214 55
[30] Meyerheim H L, Tusche C, Ernst A, Ostanin S, Maznichenko I V, Mohseni K, Jedrecy N, Zegenhagen J, Roy J, Mertig I and Kirschner J 2009 Phys. Rev. Lett. 102 156102
[31] Naydenova T, Atanasov P, Koleva M, Nedialkov N, Perriere J, Defourneau D, Fukuoka H, Obara M, Baumgart C H, Zhou S H and Schmidt H 2010 Thin Solid Films doi: 10.1016/j.tsf.2010.04.034
[32] Yamamoto T and Katayama-Yoshida H 1999 Jpn. J. Appl. Phys. 38 L166
[33] Joseph M, Tabata H and Kawai T 1999 Jpn. J. Appl. Phys. 38 L1205
[34] Heo Y W, Ivill M P, Ip K, Norton D P, Pearton S J, Kelly J G, Rairigh R, Hebard A F and Steiner T 2004 Appl. Phys. Lett. 84 2292
[35] Mounkachi O, Benyoussef A, El Kenz A, Saidi E H and Hlil E K 2009 J. Appl. Phys. 106 093905
[36] Mounkachi O, Benyoussef A, El Kenz A, Saidi E H and Hlil E K 2008 J. Magn. Magn. Mater. 320 2760
[37] Mounkachi O, Benyoussef A, El Kenz A, Saidi E H and Hlil E K 2009 Physica A 388 3433
[38] Fakhim Lamrani A, Belaiche M, Benyoussef A, El Kenz A and Saidi E H 2010 J. Magn. Magn. Mater. 322 454
[39] Cho Y M, Choo W K, Kim H, Kim D and Ihm Y E 2002 Appl. Phys. Lett. 80 3358
[40] Akai H 1989 J. Phys.: Condens. Matter 1 8045
[41] Akai H 1998 Phys. Rev. Lett. 81 3002
[42] Akai H and Dederichs P H 1993 Phys. Rev. B 47 8739
[43] Moruzzi V L, Janak J F and Williams A R 1978 Calculated Properties of Metals (New York: Pergamon)
[44] Akai H http://sham.phys.sci.osaka-u.ac.jp/kkr/
[45] Lei T, Moustakas T D, Graham R J, He Y and Berkowitz S J 1992 J. Appl. Phys. 71 4933
[46] Gyorffy B L, Pindor A J, Staunton J, Stocks G M and Winter H 1985 J. Phys. F: Met. Phys. 15 1337
[47] Lany S and Zunger A 2009 Modelling Simul. Mater. Sci. Eng. 17 084002
[48] Lany S and Zunger A 2010 Phys. Rev. B 81 113201
[1] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[2] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[3] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[4] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[5] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[6] Discontinuous transition between Zundel and Eigen for H5O2+
Endong Wang(王恩栋), Beien Zhu(朱倍恩), Yi Gao(高嶷). Chin. Phys. B, 2020, 29(8): 083101.
[7] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[8] Inducing opto-electronic and spintronic trends in bilayer h-BN through TMO3 clusters incorporation: Ab-initio study
Irfan Ahmed, Muhammad Rafique, Mukhtiar Ahmed Mahar, Abdul Sattar Larik, Mohsin Ali Tunio, Yong Shuai(帅永). Chin. Phys. B, 2019, 28(11): 116301.
[9] Electronic properties of defects in Weyl semimetal tantalum arsenide
Yan-Long Fu(付艳龙), Chang-Kai Li(李长楷), Zhao-Jun Zhang(张昭军), Hai-Bo Sang(桑海波), Wei Cheng(程伟), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(9): 097101.
[10] Passivation of carbon dimer defects in amorphous SiO2/4H-SiC (0001) interface: A first-principles study
Yi-Jie Zhang(张轶杰), Zhi-Peng Yin(尹志鹏), Yan Su(苏艳), De-Jun Wang(王德君). Chin. Phys. B, 2018, 27(4): 047103.
[11] The electronic, optical, and thermodynamical properties of tetragonal, monoclinic, and orthorhombic M3N4 (M=Si, Ge, Sn): A first-principles study
Dong Chen(陈东), Ke Cheng(程科), Bei-Ying Qi(齐蓓影). Chin. Phys. B, 2017, 26(4): 046303.
[12] Comparative study of Mo2Ga2C with superconducting MAX phase Mo2GaC: First-principles calculations
M A Ali, M R Khatun, N Jahan, M M Hossain. Chin. Phys. B, 2017, 26(3): 033102.
[13] Orbital electronic heat capacity of hydrogenated monolayer and bilayer graphene
Mohsen Yarmohammadi. Chin. Phys. B, 2017, 26(2): 026502.
[14] Study of magnetic and optical properties of Zn1-xTMxTe (TM=Mn, Fe, Co, Ni) diluted magnetic semiconductors: First principle approach
Q Mahmood, M Hassan, M A Faridi. Chin. Phys. B, 2017, 26(2): 027503.
[15] Density function theoretical study on the complex involved in Th atom-activated C-C bond in C2H6
Qing-Qing Wang(王青青), Peng Li(李鹏), Tao Gao(高涛), Hong-Yan Wang(王红艳), Bing-Yun Ao(敖冰云). Chin. Phys. B, 2016, 25(6): 063102.
No Suggested Reading articles found!