Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 087505    DOI: 10.1088/1674-1056/20/8/087505
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Multiferroic ZnO obtained by substituting oxygen with nitrogen

Xu Qing-Yu(徐庆宇)a),Wen Zheng(温峥)b), Gao Jin-Long(高锦龙)c),Wu Di(吴迪) b), Qiu Teng(邱腾)a),Tang Shao-Long(唐少龙)c),and Xu Ming-Xiang(徐明祥)a)
a Department of Physics, Southeast University, Nanjing 211189, China; b Department of Materials Science and Engineering, Nanjing University, Nanjing 210008, China; c Department of Physics, Nanjing University, Nanjing 210008, China
Abstract  N-doped ZnO films were prepared in nitrogen plasma by pulsed laser deposition. Clear room temperature ferromagnetism has been observed in the film prepared at a substrate temperature of 500 °C. The structural characterizations of X-ray diffraction, Raman, and X-ray photoelectron spectroscopy confirm the substitution of O by N in ZnO, which has been considered to be the origin of the observed ferromagnetism. Furthermore, ferroelectricity has been observed at room temperature by piezoelectric force microscopy, indicating the potential multiferroic applications.
Keywords:  multiferroics      diluted magnetic semiconductor      ZnO  
Received:  10 February 2011      Revised:  15 March 2011      Accepted manuscript online: 
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  75.50.Pp (Magnetic semiconductors)  
  77.55.hf (ZnO)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50802041 and 50872050), the National Key Basic Research Program of China (Grant Nos. 2009CB929503 and 2010CB923404), NCET-09-0296 and Southeast University, and partially supported by the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2010421).

Cite this article: 

Xu Qing-Yu(徐庆宇), Wen Zheng(温峥), Gao Jin-Long(高锦龙), Wu Di(吴迪), Qiu Teng(邱腾), Tang Shao-Long(唐少龙), and Xu Ming-Xiang(徐明祥) Multiferroic ZnO obtained by substituting oxygen with nitrogen 2011 Chin. Phys. B 20 087505

[1] Wang K F, Liu J M and Ren Z F 2009 Adv. Phys. 58 321
[2] "Ozgür "U, Alivov Ya I, Liu C, Teke A, Reshchikov M A, Dovgan S, Avrutin V, Cho S J and Morkocc H 2005 J. Appl. Phys. 98 041301
[3] Onodera A 2002 Ferroelectrics 267 131, and references therein
[4] Yang Y C, Song C, Wang X H, Zeng F and Pan F 2008 J. Appl. Phys. 103 074107
[5] Yang Y C, Song C, Zeng F, Pan F, Xie Y N and Liu T 2007 Appl. Phys. Lett. 90 242903
[6] Ohno H 1998 Science 281 951
[7] Yang Y C, Zhong C F, Wang X H, He B, Wei S Q, Zeng F and Pan F 2008 J. Appl. Phys. 104 064102
[8] Lin Y, Ying M, Li M, Wang X and Nan C 2007 Appl. Phys. Lett. 90 222110
[9] Zhou S, Xu Q, Potzger K, Talut G, Gr"otzsche R, Fassbender J, Vinnichenko M, Grenzer J, Helm M, Hochmuth H, Lorenz M, Grundmann M and Schmidt H 2008 Appl. Phys. Lett. 93 232507
[10] Pan H, Yi J B, Shen L, Wu R Q, Yang J H, Lin J Y, Feng Y P, Ding J, Van L H and Yin J H 2007 Phys. Rev. Lett. 99 127201
[11] Elfimov I S, Rusydi A, Csiszar S I, Hu Z, Hsieh H H, Lin H J, Chen C T, Liang R and Sawatzky G A 2007 Phys. Rev. Lett. 98 137202
[12] Shi L, Jin J and Zhang T 2010 Chin. Phys. B 19 127001
[13] Xu Q, Schmidt H, Zhou S, Potzger K, Helm M, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C and Grundmann M 2008 Appl. Phys. Lett. 92 082508
[14] Li L, Shan C X, Li B H, Zhang J Y, Yao B, Shen D Z, Fan X W and Lu Y M 2010 J. Mater. Sci. 45 4093
[15] Barnes T M, Olson K and Wolden C A 2005 Appl. Phys. Lett. 86 112112
[16] Yao B, Shen D Z, Zhang Z Z, Wang X H, Wei Z P, Li B H, Lü Y M, Fan X W, Guan L X, Xing G Z, Cong C X and Xie Y P 2006 J. Appl. Phys. 99 123510
[17] Xu Q, Wen Z, Xu L, Gao J, Wu D, Shen K, Qiu T, Tang S and Xu M 2011 Physica B 406 19
[18] Agarwal D C, Singh F, Kabiraj D, Sen S, Kulariya P K, Sulania I, Nozaki S, Chauhan R S and Avasthi D K 2008 J. Phys. D: Appl. Phys. 41 045305, and references therein
[19] Xiao Z, Liu Y, Zhang J, Zhao D, Lu Y, Shen D and Fan X 2005 Semicond. Sci. Technol. 20 796
[20] Kaschner A, Haboeck U, Strassburg M, Strassburg M, Kaczmarczyk G, Hoffmann A, Thomsen C, Zeuner A, Alves H R, Hofmann D M and Meyer B K 2002 Appl. Phys. Lett. 80 1909
[21] Sui Y R, Yao B, Yang J H, Cui H F, Huang X M, Yang T, Gao L L, Deng R and Shen D Z 2010 Appl. Surf. Sci. 256 2726
[22] Friedrich F, Gluba M A and Nickel N H 2009 Appl. Phys. Lett. 95 141903
[23] Wei L, Li Z and Zhang W F 2009 Appl. Surf. Sci. 255 4992
[24] Cao P, Zhao D X, Zhang J Y, Shen D Z, Lu Y M, Yao B, Liu B H, Bai Y and Fan X W 2008 Appl. Surf. Sci. 254 2900
[25] Perkins C L, Lee S, Li X, Asher S E and Coutts T J 2005 J. Appl. Phys. 97 034907
[26] Shen L, Wu R Q, Pan H, Peng G W, Yang M, Sha Z D and Feng Y P 2008 Phys. Rev. B 78 073306
[27] Yu C, Lin T, Sun S and Chou H 2007 J. Phys. D: Appl. Phys. 40 6497
[28] Lyons J L, Janotti A and van der Walle C G 2009 Appl. Phys. Lett. 95 252105
[29] Coey J M D, Venkatesan M and Fitzgerald C B 2005 Nature Mater. 4 173
[30] Zou C W, Wang H J, Yi M L, Li M, Liu C S, Guo L P, Fu D J and Kang T W 2010 Appl. Surf. Sci. 256 2453
[31] Glinchuk M D, Kirichenko E V, Stephanovich V A and Zaulychny B Y 2009 J. Appl. Phys. 105 104101
[32] Shannon R D 1976 Acta Cryst. A 32 751
[33] Tagantsev A K 2008 Appl. Phys. Lett. 93 202905
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[3] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[4] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[5] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[6] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[7] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[8] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[9] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[10] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[11] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[12] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[13] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[14] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[15] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
No Suggested Reading articles found!