Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 077804    DOI: 10.1088/1674-1056/20/7/077804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Simulation of the light extraction efficiency of nanostructure light-emitting diodes

Zhu Ji-Hong(朱继红)a), Wang Liang-Ji(王良吉) a), Zhang Shu-Ming(张书明)a)† , Wang Hui(王辉)a), Zhao De-Gang(赵德刚)a), Zhu Jian-Jun(朱建军)a), Liu Zong-Shun(刘宗顺)a), Jiang De-Sheng(江德生) a), and Yang Hui(杨辉)a)b)
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China; b Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
Abstract  The light extraction efficiencies have been calculated for various InGaN/GaN multiple quantum well nanostructure light-emitting diodes including nanopillar, nanorough of P-GaN surface, coreshell and nano-interlayer structure. From the calculated results we can see that the light extraction efficiency is remarkably improved in the nanostructures, especially those with an InGaN or AlGaN nano-interlayer. With a 420-nm luminescence wavelength, the light extraction efficiency can reach as high as 65% for the InGaN or AlGaN nano-interlayer structure with appropriate In or Al content while only 26% for the planar structure.
Keywords:  light extraction efficiency      InGaN/GaN multiple quantum well      nanostructure  
Received:  12 November 2010      Revised:  12 March 2011      Accepted manuscript online: 
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.67.De (Quantum wells)  
  78.67.Qa (Nanorods)  
  78.20.Bh (Theory, models, and numerical simulation)  

Cite this article: 

Zhu Ji-Hong(朱继红), Wang Liang-Ji(王良吉), Zhang Shu-Ming(张书明), Wang Hui(王辉), Zhao De-Gang(赵德刚), Zhu Jian-Jun(朱建军), Liu Zong-Shun(刘宗顺), Jiang De-Sheng(江德生), and Yang Hui(杨辉) Simulation of the light extraction efficiency of nanostructure light-emitting diodes 2011 Chin. Phys. B 20 077804

[1] Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H and Sugimoto Y 1996 Jpn. J. Appl. Phys. 35 L74
[2] Broditsk M Y and Yablonovitch E 1997 Proc. SPIE 3002 119
[3] Peng W C and Wu Y C S 2006 Appl. Phys. Lett. 89 041116
[4] Wang P, Gan Z Y and Liu S 2009 Opt. Laser Technol. 41 823
[5] Ryu B S W, Park J, Oh J K, Long D H, Kwon K W, Kim Y H, Lee J K and Kim J H 2009 Adv. Funct. Mater. 19 1650
[6] Xu T, Zhu N, Michelle Y C X, Wosinski L, Aitchison J S and Ruda H E 2009 Appl. Phys. Lett. 94 241110
[7] Chang S J, Lin Y C, Su Y K, Chang C S, Wen T C, Shei S C, Ke J C, Kuo C W, Chen S C and Liu C H 2003 Solid State Electronics 47 1539
[8] Cuong T V, Cheong H S, Kim H G, Kim H Y, Hong C H, Suh E K, Cho H K and Kong B H 2007 Appl. Phys. Lett. 90 131107
[9] Feng Z H, Qi Y D, Lu Z D and Lau K M 2004 J. Crystal Growth 272 327
[10] Lee Y J, Hsu T C, Kuo H C, Wang S C, Yang Y L, Yen S N, Chu Y T, Shen Y J, Hsieh M H, Jou M J and Lee B J 2005 Mater. Sci. Eng. B 122 184
[11] Chen R, Sun H D, Wang T, Hui K N and Choi H W 2010 Appl. Phys. Lett. 96 241101
[12] Kim H M, Cho Y H, Lee H, Kim S I, Ryu S R, Kim D Y, Kang T W and Chung K S 2004 Nano Letters 6 1059
[13] Zhu J H, Zhang S M, Sun X, Zhao D G, Zhu J J, Liu Z S, Jiang D S, Duan L H, Wang H, Shi Y S, Lin S Y and Yang H 2008 Chin. Phys. Lett. 25 3485
[14] Choi H W, Dawson M D, Edwards P R and Martin R W 2003 Appl. Phys. Lett. 83 4483
[15] Chen Y X, Shen G D, Han J R, Li J J and Guo W L 2010 Acta Phys. Sin. 59 545 (in Chinese)
[16] Yan G J, Chen G D and Wu Y L 2009 Chin. Phys. B 18 2925
[17] Wang L J, Zhang S M, Zhu J H, Zhu J J, Zhao D G, Liu Z S, Jiang D S, Wang Y T and Wang H 2010 Chin. Phys. B 19 017307
[18] Wu X H, Elsass C R, Abare A, Mack M, Keller S, Petroff P M, DenBaars S P, Speck J S and Rosner S J 1998 Appl. Phys. Lett. 72 692
[19] Sun X, Jiang D S, Liu W B, Zhu J H, Wang H, Liu Z S, Zhu J J, Wang Y T, Zhao D G, Zhang S M, You L P, Ma R M and Ynag H 2009 J. Appl. Phys. 106 026102
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[5] Morphological and structural damage investigation of nanostructured molybdenum fuzzy surface after pulsed plasma bombardment
Yu-Chuan Luo(罗玉川), Rong Yan(鄢容), Guo Pu(蒲国), Hong-Bin Wang(王宏彬), Zhi-Jun Wang(王志君), Chi Yang(杨驰), Li Yang(杨黎), Heng-Xin Guo(郭恒鑫), Zhi-Bing Zhou(周志兵), Bo Chen(陈波), Jian-Jun Chen(陈建军), Fu-Jun Gou(芶富均), Zong-Biao Ye(叶宗标), and Kun Zhang(张坤). Chin. Phys. B, 2022, 31(4): 045203.
[6] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[7] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[8] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[9] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[10] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[11] Separating spins by dwell time of electrons across parallel double δ-magnetic-barrier nanostructure applied by bias
Sai-Yan Chen(陈赛艳), Mao-Wang Lu(卢卯旺), and Xue-Li Cao(曹雪丽). Chin. Phys. B, 2022, 31(1): 017201.
[12] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[13] Morphological effect on electrochemical performance of nanostructural CrN
Zhengwei Xiong(熊政伟), Xuemei An(安雪梅), Qian Liu(刘倩), Jiayi Zhu(朱家艺), Xiaoqiang Zhang(张小强), Chenchun Hao(郝辰春), Qiang Yang(羊强), Zhipeng Gao(高志鹏), and Meng Zhang(张盟). Chin. Phys. B, 2021, 30(12): 128201.
[14] Superchiral fields generated by nanostructures and their applications for chiral sensing
Huizhen Zhang(张慧珍), Weixuan Zhang(张蔚暄), Saisai Hou(侯赛赛), Rongyao Wang(王荣瑶), and Xiangdong Zhang(张向东). Chin. Phys. B, 2021, 30(11): 113303.
[15] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
No Suggested Reading articles found!