CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Simulation of the light extraction efficiency of nanostructure light-emitting diodes |
Zhu Ji-Hong(朱继红)a), Wang Liang-Ji(王良吉) a), Zhang Shu-Ming(张书明)a)† , Wang Hui(王辉)a), Zhao De-Gang(赵德刚)a), Zhu Jian-Jun(朱建军)a), Liu Zong-Shun(刘宗顺)a), Jiang De-Sheng(江德生) a), and Yang Hui(杨辉)a)b) |
a State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China; b Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China |
|
|
Abstract The light extraction efficiencies have been calculated for various InGaN/GaN multiple quantum well nanostructure light-emitting diodes including nanopillar, nanorough of P-GaN surface, coreshell and nano-interlayer structure. From the calculated results we can see that the light extraction efficiency is remarkably improved in the nanostructures, especially those with an InGaN or AlGaN nano-interlayer. With a 420-nm luminescence wavelength, the light extraction efficiency can reach as high as 65% for the InGaN or AlGaN nano-interlayer structure with appropriate In or Al content while only 26% for the planar structure.
|
Received: 12 November 2010
Revised: 12 March 2011
Accepted manuscript online:
|
PACS:
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
78.67.De
|
(Quantum wells)
|
|
78.67.Qa
|
(Nanorods)
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
Cite this article:
Zhu Ji-Hong(朱继红), Wang Liang-Ji(王良吉), Zhang Shu-Ming(张书明), Wang Hui(王辉), Zhao De-Gang(赵德刚), Zhu Jian-Jun(朱建军), Liu Zong-Shun(刘宗顺), Jiang De-Sheng(江德生), and Yang Hui(杨辉) Simulation of the light extraction efficiency of nanostructure light-emitting diodes 2011 Chin. Phys. B 20 077804
|
[1] |
Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H and Sugimoto Y 1996 Jpn. J. Appl. Phys. 35 L74
|
[2] |
Broditsk M Y and Yablonovitch E 1997 Proc. SPIE 3002 119
|
[3] |
Peng W C and Wu Y C S 2006 Appl. Phys. Lett. 89 041116
|
[4] |
Wang P, Gan Z Y and Liu S 2009 Opt. Laser Technol. 41 823
|
[5] |
Ryu B S W, Park J, Oh J K, Long D H, Kwon K W, Kim Y H, Lee J K and Kim J H 2009 Adv. Funct. Mater. 19 1650
|
[6] |
Xu T, Zhu N, Michelle Y C X, Wosinski L, Aitchison J S and Ruda H E 2009 Appl. Phys. Lett. 94 241110
|
[7] |
Chang S J, Lin Y C, Su Y K, Chang C S, Wen T C, Shei S C, Ke J C, Kuo C W, Chen S C and Liu C H 2003 Solid State Electronics 47 1539
|
[8] |
Cuong T V, Cheong H S, Kim H G, Kim H Y, Hong C H, Suh E K, Cho H K and Kong B H 2007 Appl. Phys. Lett. 90 131107
|
[9] |
Feng Z H, Qi Y D, Lu Z D and Lau K M 2004 J. Crystal Growth 272 327
|
[10] |
Lee Y J, Hsu T C, Kuo H C, Wang S C, Yang Y L, Yen S N, Chu Y T, Shen Y J, Hsieh M H, Jou M J and Lee B J 2005 Mater. Sci. Eng. B 122 184
|
[11] |
Chen R, Sun H D, Wang T, Hui K N and Choi H W 2010 Appl. Phys. Lett. 96 241101
|
[12] |
Kim H M, Cho Y H, Lee H, Kim S I, Ryu S R, Kim D Y, Kang T W and Chung K S 2004 Nano Letters 6 1059
|
[13] |
Zhu J H, Zhang S M, Sun X, Zhao D G, Zhu J J, Liu Z S, Jiang D S, Duan L H, Wang H, Shi Y S, Lin S Y and Yang H 2008 Chin. Phys. Lett. 25 3485
|
[14] |
Choi H W, Dawson M D, Edwards P R and Martin R W 2003 Appl. Phys. Lett. 83 4483
|
[15] |
Chen Y X, Shen G D, Han J R, Li J J and Guo W L 2010 Acta Phys. Sin. 59 545 (in Chinese)
|
[16] |
Yan G J, Chen G D and Wu Y L 2009 Chin. Phys. B 18 2925
|
[17] |
Wang L J, Zhang S M, Zhu J H, Zhu J J, Zhao D G, Liu Z S, Jiang D S, Wang Y T and Wang H 2010 Chin. Phys. B 19 017307
|
[18] |
Wu X H, Elsass C R, Abare A, Mack M, Keller S, Petroff P M, DenBaars S P, Speck J S and Rosner S J 1998 Appl. Phys. Lett. 72 692
|
[19] |
Sun X, Jiang D S, Liu W B, Zhu J H, Wang H, Liu Z S, Zhu J J, Wang Y T, Zhao D G, Zhang S M, You L P, Ma R M and Ynag H 2009 J. Appl. Phys. 106 026102
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|