Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 060306    DOI: 10.1088/1674-1056/20/6/060306
GENERAL Prev   Next  

Implementation of quantum controlled phase gate and preparation of multiparticle entanglement in cavity QED

Wu Xi(吴熙)a), Chen Zhi-Hua(陈志华)a), Zhang Yong(张勇)b), Chen Yue-Hua(陈悦华)a), Ye Ming-Yong(叶明勇) a), and Lin Xiu-Min(林秀敏)a)†
a School of Physics and Optoelectronics Technology, Fujian Normal University, Fuzhou 350007, China; b Department of Physics, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  Schemes are presented for realizing quantum controlled phase gate and preparing an N-qubit W-like state, which are based on the large-detuned interaction among three-state atoms, dual-mode cavity and a classical pulse. In particular, a class of W states that can be used for perfect teleportation and superdense coding is generated by only one step. Compared with the previous schemes, cavity decay is largely suppressed because the cavity is only virtually excited and always in the vacuum state and the atomic spontaneous emission is strongly restrained due to a large atom-field detuning.
Keywords:  phase gate      W states      cavity QED  
Received:  07 October 2010      Revised:  27 December 2010      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  31.30.J- (Relativistic and quantum electrodynamic (QED) effects in atoms, molecules, and ions)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60878059, 10947147, 10574022, and 10704010) and the Natural Science Foundation of Fujian Province of China (Grant Nos. 2007J0002 and 2010J01002).

Cite this article: 

Wu Xi(吴熙), Chen Zhi-Hua(陈志华), Zhang Yong(张勇), Chen Yue-Hua(陈悦华), Ye Ming-Yong(叶明勇), and Lin Xiu-Min(林秀敏) Implementation of quantum controlled phase gate and preparation of multiparticle entanglement in cavity QED 2011 Chin. Phys. B 20 060306

[1] DiVincenzo D P 1995 Phys. Rev. A 51 1015
[2] Kaler F S, Häffner H, Riebe M, Gulde S, Lancaster G P T, Deuschle T, Becher C, Roos C F, Eschner J and Blatt R 2003 Nature 422 408
[3] Jones J A, Mosca M and Hansen R H 1998 Nature 393 344
[4] Gershenfeld N A and Chuang I L 1997 Seience 275 350
[5] Sleator T and Weinfurter H 1995 Phys. Rev. Lett. 74 4087
[6] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[7] Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M and Haroche S 2001 Phys. Rev. Lett. 87 037902
[8] Kafatos M 1989 Bell's Theorem, Quantum Theory and Conceptions of the Universe (London: Kluwer Academic Publishers)
[9] Greenberger D M, Horne M A, Shimony A and Zeilinger A 1990 Am. J. Phys. 58 1131
[10] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W 1993 Phys. Rev. Lett. 70 1895
[11] Deutsch D and Jozsa R 1992 Proc. R. Soc. London Ser. A 439 553
[12] Ekert A K 1991 Phys. Rev. Lett. 67 661
[13] Piani M and Watrous J 2009 Phys. Rev. Lett. 102 250501
[14] Cirac J I, Ekert A E, Huelga S F and Macchiavello C 1999 Phys. Rev. A 59 4249
[15] Bose S, Vedral V and Knight P L 1998 Phys. Rev. A 57 822
[16] Hillery M, Buvzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[17] Chen Y A, Zhang A N, Zhao Z, Zhou X Q, Lu C Y, Peng C Z, Yang T and Pan J W 2005 Phys. Rev. Lett. 95 200502
[18] Yu X M, Gu Y J, Ma L Z and Zhou B A 2008 Chin. Phys. B 17 462
[19] James D F and Jerke J 2007 Can. J. Phys. 85 625
[20] James D F V 2000 Fortschr. Phys. 48 823
[21] Zou X B, Xiao Y F, Li S B, Yang Yong and Guo G C 2007 Phys. Rev. A 75 064301
[22] Xiao Y F, Zou X B and Guo G C 2007 Phys. Rev. A 75 012310
[23] Lin G W, Zou X B, Ye M Y, Lin X M and Guo G C 2008 Phys. Rev. A 77 032308
[24] Agrawal P and Pati A 2006 Phys. Rev. A 74 062320
[25] Steck D A http://steck.us/alkalidata/
[26] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[27] Painter O, Lee R K, Scherer A, Yariv A, O'Brien J D, Dapkus P D and Kim I 1999 Science 284 1819
[28] Noda S, Chutinan A and Imada M 2000 Nature 407 608
[29] Blais A, Huang R H, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[30] Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2002 Science 296 886
[31] Noda S, Fujita M and Asano T 2007 Nat. Photon. 1 449
[32] Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B and Deppe D G 2004 Nature 432 200
[33] Gibbs G, Kira H M, Koch M and Scherer S W 2006 Nat. Phys. 2 81
[34] Deng Z J, Feng M and Gao K L 2006 Phys. Rev. A 73 014302
[1] Phase-modulated quadrature squeezing in two coupled cavities containing a two-level system
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Xue-Fang Zhou(周雪芳), Mei-Hua Bi(毕美华), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2020, 29(5): 050308.
[2] Cavity enhanced measurement of trap frequency in an optical dipole trap
Peng-Fei Yang(杨鹏飞), Hai He(贺海), Zhi-Hui Wang(王志辉), Xing Han(韩星), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(4): 043701.
[3] Implementation of quantum phase gate between two atoms via Rydberg antiblockade and adiabatic passage
Xi Tan(谭曦), Jin-Lei Wu(吴金雷), Can Deng(邓灿), Wei-Jian Mao(毛伟建), Hai-Tao Wang(王海涛), Xin Ji(计新). Chin. Phys. B, 2018, 27(10): 100307.
[4] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[5] Photon bunching and anti-bunching with two dipole-coupled atoms in an optical cavity
Ya-Mei Zheng(郑雅梅), Chang-Sheng Hu(胡长生), Zhen-Biao Yang(杨贞标), Huai-Zhi Wu(吴怀志). Chin. Phys. B, 2016, 25(10): 104202.
[6] Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋). Chin. Phys. B, 2015, 24(7): 070310.
[7] Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED
Wen Jing-Ji (文晶姬), Yeon Kyu-Hwang, Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(4): 040301.
[8] Implementation of a nonlocal N-qubit conditional phase gate using the nitrogen-vacancy center and microtoroidal resonator coupled systems
Cao Cong (曹聪), Liu Gang (刘刚), Zhang Ru (张茹), Wang Chuan (王川). Chin. Phys. B, 2014, 23(4): 040304.
[9] Resonant interaction scheme for GHZ state preparation and quantum phase gate with superconducting qubits in a cavity
Liu Xin (刘欣), Liao Qing-Hong (廖庆洪), Fang Guang-Yu (方光宇), Wang Yue-Yuan (王月媛), Liu Shu-Tian (刘树田). Chin. Phys. B, 2014, 23(2): 020311.
[10] Large payload quantum steganography based on cavity quantum electrodynamics
Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍). Chin. Phys. B, 2013, 22(4): 040305.
[11] Efficient generation of two-dimensional cluster states in cavity QED
Zhang Gang (张刚), Zhou Jian (周建), Xue Zheng-Yuan (薛正远). Chin. Phys. B, 2013, 22(4): 040307.
[12] Three-qubit quantum-gate operation with an SQUID in a cavity
Shi Hui-Min(石惠敏), Yu Ya-Fei(於亚飞), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2012, 21(6): 064205.
[13] Quantum logic operations on two distant atoms trapped in two optical-fibre-connected cavities
Zhang Ying-Qiao(张英俏), Zhang Shou(张寿), Yeon Kyu-Hwang, and Yu Seong-Cho . Chin. Phys. B, 2011, 20(12): 120310.
[14] Scheme to implement optimal asymmetric economical 1→3 phase-covariant telecloning via cavity QED
Song Qing-Min(宋庆敏) and Ye Liu(叶柳). Chin. Phys. B, 2010, 19(8): 080309.
[15] One-step implementation of an N-qubit quantum phase gate through a double Raman passage
LÜ Hai-Yan(吕海燕), Yu Ya-Fei(於亚飞), and Zhang Zhi-Ming(张智明). Chin. Phys. B, 2010, 19(3): 034205.
No Suggested Reading articles found!