|
|
Implementation of quantum controlled phase gate and preparation of multiparticle entanglement in cavity QED |
Wu Xi(吴熙)a), Chen Zhi-Hua(陈志华)a), Zhang Yong(张勇)b), Chen Yue-Hua(陈悦华)a), Ye Ming-Yong(叶明勇) a), and Lin Xiu-Min(林秀敏)a)† |
a School of Physics and Optoelectronics Technology, Fujian Normal University, Fuzhou 350007, China; b Department of Physics, Beijing University of Posts and Telecommunications, Beijing 100876, China |
|
|
Abstract Schemes are presented for realizing quantum controlled phase gate and preparing an N-qubit W-like state, which are based on the large-detuned interaction among three-state atoms, dual-mode cavity and a classical pulse. In particular, a class of W states that can be used for perfect teleportation and superdense coding is generated by only one step. Compared with the previous schemes, cavity decay is largely suppressed because the cavity is only virtually excited and always in the vacuum state and the atomic spontaneous emission is strongly restrained due to a large atom-field detuning.
|
Received: 07 October 2010
Revised: 27 December 2010
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
31.30.J-
|
(Relativistic and quantum electrodynamic (QED) effects in atoms, molecules, and ions)
|
|
42.50.-p
|
(Quantum optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60878059, 10947147, 10574022, and 10704010)
and the Natural Science Foundation of Fujian Province of China (Grant Nos. 2007J0002 and 2010J01002). |
Cite this article:
Wu Xi(吴熙), Chen Zhi-Hua(陈志华), Zhang Yong(张勇), Chen Yue-Hua(陈悦华), Ye Ming-Yong(叶明勇), and Lin Xiu-Min(林秀敏) Implementation of quantum controlled phase gate and preparation of multiparticle entanglement in cavity QED 2011 Chin. Phys. B 20 060306
|
[1] |
DiVincenzo D P 1995 Phys. Rev. A 51 1015
|
[2] |
Kaler F S, Häffner H, Riebe M, Gulde S, Lancaster G P T, Deuschle T, Becher C, Roos C F, Eschner J and Blatt R 2003 Nature 422 408
|
[3] |
Jones J A, Mosca M and Hansen R H 1998 Nature 393 344
|
[4] |
Gershenfeld N A and Chuang I L 1997 Seience 275 350
|
[5] |
Sleator T and Weinfurter H 1995 Phys. Rev. Lett. 74 4087
|
[6] |
Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
|
[7] |
Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M and Haroche S 2001 Phys. Rev. Lett. 87 037902
|
[8] |
Kafatos M 1989 Bell's Theorem, Quantum Theory and Conceptions of the Universe (London: Kluwer Academic Publishers)
|
[9] |
Greenberger D M, Horne M A, Shimony A and Zeilinger A 1990 Am. J. Phys. 58 1131
|
[10] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W 1993 Phys. Rev. Lett. 70 1895
|
[11] |
Deutsch D and Jozsa R 1992 Proc. R. Soc. London Ser. A 439 553
|
[12] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[13] |
Piani M and Watrous J 2009 Phys. Rev. Lett. 102 250501
|
[14] |
Cirac J I, Ekert A E, Huelga S F and Macchiavello C 1999 Phys. Rev. A 59 4249
|
[15] |
Bose S, Vedral V and Knight P L 1998 Phys. Rev. A 57 822
|
[16] |
Hillery M, Buvzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
|
[17] |
Chen Y A, Zhang A N, Zhao Z, Zhou X Q, Lu C Y, Peng C Z, Yang T and Pan J W 2005 Phys. Rev. Lett. 95 200502
|
[18] |
Yu X M, Gu Y J, Ma L Z and Zhou B A 2008 Chin. Phys. B 17 462
|
[19] |
James D F and Jerke J 2007 Can. J. Phys. 85 625
|
[20] |
James D F V 2000 Fortschr. Phys. 48 823
|
[21] |
Zou X B, Xiao Y F, Li S B, Yang Yong and Guo G C 2007 Phys. Rev. A 75 064301
|
[22] |
Xiao Y F, Zou X B and Guo G C 2007 Phys. Rev. A 75 012310
|
[23] |
Lin G W, Zou X B, Ye M Y, Lin X M and Guo G C 2008 Phys. Rev. A 77 032308
|
[24] |
Agrawal P and Pati A 2006 Phys. Rev. A 74 062320
|
[25] |
Steck D A http://steck.us/alkalidata/
|
[26] |
Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
|
[27] |
Painter O, Lee R K, Scherer A, Yariv A, O'Brien J D, Dapkus P D and Kim I 1999 Science 284 1819
|
[28] |
Noda S, Chutinan A and Imada M 2000 Nature 407 608
|
[29] |
Blais A, Huang R H, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
|
[30] |
Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2002 Science 296 886
|
[31] |
Noda S, Fujita M and Asano T 2007 Nat. Photon. 1 449
|
[32] |
Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B and Deppe D G 2004 Nature 432 200
|
[33] |
Gibbs G, Kira H M, Koch M and Scherer S W 2006 Nat. Phys. 2 81
|
[34] |
Deng Z J, Feng M and Gao K L 2006 Phys. Rev. A 73 014302
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|