|
|
Composite-fermionization of the mixture composed of Tonks gas and Fermi gas |
Hao Ya-Jiang(郝亚江)† |
Department of Physics, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract This paper investigates the ground-state properties of the mixture composed of the strongly interacting Tonks-Girardeau gas and spin polarized Fermi gas confined in one-dimensional harmonic traps, where the interaction between the Bose atoms and Fermi atoms is tunable. With a generalized Bose-Fermi transformation the mixture is mapped into a two-component Fermi gas. The homogeneous Fermi gas is exactly solvable by the Bethe-ansatz method and the ground state energy density can be obtained. Combining the ground-state energy function of the homogeneous system with local density approximation it obtains the ground-state density distributions of inhomogeneous mixture. It is shown that with the increase in boson-fermion interaction, the system exhibits composite-fermionization crossover.
|
Received: 20 September 2010
Revised: 21 January 2011
Accepted manuscript online:
|
PACS:
|
03.75.Mn
|
(Multicomponent condensates; spinor condensates)
|
|
03.75.Hh
|
(Static properties of condensates; thermodynamical, statistical, and structural properties)
|
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11004007) and the Fundamental Research
Funds for the Central Universities. |
Cite this article:
Hao Ya-Jiang(郝亚江) Composite-fermionization of the mixture composed of Tonks gas and Fermi gas 2011 Chin. Phys. B 20 060307
|
[1] |
Stöferle T, Moritz H, Schori C, Köhl M and Esslinger T 2004 Phys. Rev. Lett. 92 130403
|
[2] |
Paredes B, Widera A, Murg V, Mandel Q, Fölling S, Cirac I, Shlyapnikov G V, Hänsch T W and Bloch I 2004 Nature 429 277
|
[3] |
Kinoshita T, Wenger T and Weiss D S 2004 Science 305 1125
|
[4] |
Ho T L and Shenoy V B 1996 Phys. Rev. Lett. 77 3276
|
[5] |
Ao P and Chui S T 1998 Phys. Rev. A 58 4836
|
[6] |
Pu H and Bigelow N P 1998 Phys. Rev. Lett. 80 1130
|
[7] |
Cazalilla M A and Ho A F 2003 Phys. Rev. Lett. 91 150403
|
[8] |
Zhou L, Qian J, Pu H, Zhang W and Ling H Y 2008 Phys. Rev. A 78 053612
|
[9] |
Imambekov A and Demler E 2006 Phys. Rev. A 73 021602(R)
|
[10] |
Imambekov A and Demler E 2006 Ann. Phys. (N.Y.) 321 2390
|
[11] |
Chen S and Egger R 2003 Phys. Rev. A 68 063605
|
[12] |
Molmer K 1998 Phys. Rev. Lett. 80 1804
|
[13] |
Guan X W, Batchelor M T and Lee J Y 2008 Phys. Rev. A 78 023621
|
[14] |
Frahm H and Palacios G 2005 Phys. Rev. A 72 061604(R)
|
[15] |
Yin X, Chen S and Zhang Y 2009 Phys. Rev. A 79 053604
|
[16] |
Myatt C J, Burt E A, Ghrist R W, Cornell E A and Wieman C E 1997 Phys. Rev. Lett. 78 586
|
[17] |
Modugno G, Ferrari G, Roati G, Brecha R G, Simoni A and Inguscio M 2001 Science 294 1320
|
[18] |
Ospelkaus C, Ospelkaus S, Humbert L, Ernst P, Sengstock K and Bongs K 2006 it Phys. Rev. Lett. 97 120402
|
[19] |
Thalhammer G, Barontini G, De Sarlo L, Catani J, Minardi F and Inguscio M 2008 Phys. Rev. Lett. 100 210402
|
[20] |
Papp S B, Pino J M and Wieman C E 2008 Phys. Rev. Lett. 101 040402
|
[21] |
Schreck F, Khaykovich L, Corwin K L, Ferrari G, Bourdel T, Cubizolles J and Salomon C 2001 Phys. Rev. Lett.87 080403
|
[22] |
Hadzibabic Z, Stan C A, Dieckmann K, Gupta S, Zwierlein M W, Gorlitz A and Ketterle W 2002 Phys. Rev. Lett.88 160401
|
[23] |
Dunjko V, Lorent V and Olshanii M 2001 Phys. Rev. Lett. 86 5413
|
[24] |
Guan L, Chen S, Wang Y and Ma Z Q 2009 Phys. Rev. Lett. 102 160402
|
[25] |
Fuchs J N, Gangardt D M, Keilmann T and Shlyapnikov G V 2005 Phys. Rev. Lett. 95 150402
|
[26] |
Batchelor M T, Bortz M, Guan X W and Oelkers N 2006 J. Stat. Mech. 2006 P03016
|
[27] |
Hao Y, Zhang Y, Liang J Q and Chen S 2006 Phys. Rev. A 73 063617
|
[28] |
Hao Y, Zhang Y, Guan X W and Chen S 2009 Phys. Rev. A 79 033607
|
[29] |
Deuretzbacher F, Bongs K, Sengstock K and Pfannkuche D 2007 Phys. Rev. A 75 013614
|
[30] |
Yin X, Hao Y, Chen S and Zhang Y 2008 Phys. Rev. A 78 013604
|
[31] |
Hao Y and Chen S 2009 Eur. Phys. J. D 51 261
|
[32] |
Girardeau M D and Minguzzi A 2007 Phys. Rev. Lett. 99 230402
|
[33] |
Alexej I Streltsov, Ofir E Alon and Lorenz S Cederbaum 2006 Phys. Rev. A 73 063626
|
[34] |
Hao Y and Chen S 2009 Phys. Rev. A 80 043608
|
[35] |
Hao Y, unpublished
|
[36] |
Girardeau M D 1960 J. Math. Phys. (N.Y.) 1 516
|
[37] |
Girardeau M D 1965 Phys. Rev. 139 B500
|
[38] |
Yang C N 1967 Phys. Rev. Lett. 19 1312
|
[39] |
Gaudin M 1967 Phys. Lett. A 24 55
|
[40] |
Astrakharchik G E, Blume D, Giorgini S and Pitaevskii1 L P 2004 Phys. Rev. Lett. 93 050402
|
[41] |
Magyar R J and Burke K 2004 Phys. Rev. A 70 032508
|
[42] |
Gao X, Polini M, Asgari R and Tosi M P 2006 Phys. Rev. A 73 033609
|
[43] |
Abedinpour S H, Polini M, Gao X and Tosi M P 2007 Phys. Rev. A 75 015602
|
[44] |
Hu H, Liu X J and Drummond P D 2007 Phys. Rev. Lett. 98 070403
|
[45] |
Chen S, Cao J and Gu S J 2009 Europhys. Lett. 85 60004
|
[46] |
Chen S, Cao J and Gu S J 2010 Phys. Rev. A 82 053625
|
[47] |
Zöllner S, Meyer H D and Schmelcher P 2008 Phys. Rev. A 78 013629
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|