Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 058504    DOI: 10.1088/1674-1056/20/5/058504
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A biosensor based on graphene nanoribbon with nanopores: a first-principles devices-design

Ouyang Fang-Ping(欧阳方平)a)b), Peng Sheng-Lin(彭盛霖)a), Zhang Hua(张华)a), Weng Li-Bo(翁立波)a), and Xu Hui(徐慧) a)†
a School of Physics Science and Technology, Central South University, Changsha 410083, China; b College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences,Peking University, Beijing 100871, China
Abstract  A biosensor device, built from graphene nanoribbons (GNRs) with nanopores, was designed and studied by first-principles quantum transport simulation. We have demonstrated the intrinsic transport properties of the device and the effect of different nucleobases on device properties when they are located in the nanopores of GNRs. It was found that the device's current changes remarkably with the species of nucleobases, which originates from their different chemical compositions and coupling strengths with GNRs. In addition, our first-principles results clearly reveal that the distinguished ability of a device's current depends on the position of the pore to some extent. These results may present a new way to read off the nucleobases sequence of a single-stranded DNA (ssDNA) molecule by such GNRs-based device with designed nanopores
Keywords:  graphene nanoribbon      nanopores      DNA sequencing      first-principles  
Received:  18 September 2010      Revised:  10 December 2010      Accepted manuscript online: 
PACS:  85.35.-p (Nanoelectronic devices)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  87.80.St (Genomic techniques)  
Fund: Project supported by the Major Research Plan from the Ministry of Science and Technology of China (Grant No. 2011CB921900), the China Postdoctoral Science Foundation (Grant Nos. 20090460145 and 201003009), the Fundamental Research Funds for the Central Universities of China (Grant No. 201012200053), the Science and Technology Program of Hunan Province of China (Grant No. 2010DFJ411), and the Science Development Foundation of Central South University, China (Grant Nos. 08SDF02 and 09SDF09).

Cite this article: 

Ouyang Fang-Ping(欧阳方平), Peng Sheng-Lin(彭盛霖), Zhang Hua(张华), Weng Li-Bo(翁立波), and Xu Hui(徐慧) A biosensor based on graphene nanoribbon with nanopores: a first-principles devices-design 2011 Chin. Phys. B 20 058504

[1] Kumar D 2007 Genomic Med. 1 95
[2] Kruglyak L 2008 Nat. Rev. Genet. 9 314
[3] Cuniberti G and di Felice R 2004 Topics Curr. Chem. 237 183
[4] Xu M S, Endres R G and Arakawa Y 2007 Small 3 1539
[5] Porath D, Bezryadin A, de Vries S and Dekker C 2000 Nature 403 635
[6] Kyrpides N C and Porath D 2009 Nat. Biotechnol. 27 627
[7] Dovichi, N J and Zhang J Z 2000 Angew. Chem. Int. Ed. 39 4463
[8] Chan E Y 2005 Mutat. Res. 573 13
[9] Lee J W and Meller A 2007 Perspectives in Bioanalysis (Amsterdam: Elsevier)
[10] Meller A, Nivon L, Brandin E, Golovchenko J and Branton D 2000 Proc. Natl. Acad. Sci. USA 97 1079
[11] Mathe J, Aksimentiev A, Nelson D R, Schulten K and Meller A 2005 Proc. Natl. Acad. Sci. USA 102 12377
[12] Astier Y, Braha O and Bayley H J 2006 Am. Chem. Soc. 128 1705
[13] Li J L, Gershow M, Stein D, Brandin E and Golovchenko J A 2003 Nat. Mater. 2 611
[14] Chen P, Gu J J, Brandin E, Kim Y R, Wang Q and Branton D 2004 Nano Lett. 4 2293
[15] Maleki T, Mohammadi S and Ziaie B 2009 Nanotechnology 20 105302
[16] Blazej R G, Kumaresan P and Mathies R A 2006 Proc. Natl. Acad. Sci. USA 103 7240
[17] Postma H W 2010 Nano Lett. 10 420
[18] Tanaka H and Kawai T 2009 Nat. Nanotechnol. 4 518
[19] Michael Z and Massimiliano D 2008 Rev. Modern Phys. 80 141
[20] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A 2004 Science 306 666
[21] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[22] Stankovich S, Dikin D A, Dommett G H, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S B and Ruoff R S 2006 Nature 442 282
[23] Ouyang F P, Xu H and Wei C 2008 Acta Phys. Sin. 57 1073 (in Chinese)
[24] Li X, Wang X, Zhang L, Lee S and Dai H 2008 Science 319 1229
[25] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R and Dimiev A 2009 Nature 458 872
[26] Park S and Ruoff R S 2009 Nat. Nanotechnol. 4 217
[27] Jia X T, Hofmann M, Meunier V, Sumpter B G, Campos-Delgado J, Romo-Herrera J M, Son H, Hsieh Y P, Reina A, Kong J, Terrones M and Dresselhaus M S 2009 Science 323 1701
[28] Shen T, Wu Y Q, Capano M A, Rokhinson L P, Engel L W and Ye P D 2008 Appl. Phys. Lett. 93 122102
[29] Rodriguez-Manzo J A and Banhart F, 2009 Nano Lett. 9 2285
[30] Girit C O, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C H, Crommie M F, Cohen M L, Louie S G and Zettl A 2009 Science 323 1705
[31] Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J and Roth S 2007 Nature 446 7131
[32] Brandbyge M, Mozos J L, Ordej'on P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[33] Ordej'on P, Artacho E and Soler J M 1996 Phys. Rev. B 53 R10441
[34] Yan Q, Huang B, Yu J, Zheng F, Zang J, Wu J, Gu B L, Liu F and Duan W 2007 Nano Lett. 7 1469
[35] OuYang F, Huang B, Li Z, Xiao J, Wang H and Xu H 2008 J. Phys. Chem. C 112 12003
[36] OuYang F, Xiao J, Guo R, Zhang H and Xu H 2009 Nanotechnology 20 055202
[37] Li Z, Qian H, Wu J, Gu B L and Duan W H 2008 Phys. Rev. Lett. 100 206802
[38] Zhao X, Payne C M, Cummings P T and Lee J W 2007 Nanotechnology 18 424018
[39] Koskinen P, Malola S and H"akkinen S 2008 Phys. Rev. Lett. 101 115502
[40] Rosales L, Pacheco M, Barticevic Z, Le'on A, Latg'e A and Orellana P A 2009 Phys. Rev. B 80 073402
[41] Storm A J, Storm C, Chen J H, Zandbergen H, Joanny J F and Dekker C 2005 Nano Lett. 5 1193
[42] Shapir E, Cohen H, Calzolari A, Cavazzoni C, Ryndyk D A, Cuniberti G, Kotlyar A, Felice R D and Porath D 2008 Nat. Mater. 7 68 endfootnotesize
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[10] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[11] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[12] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[13] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[14] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[15] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
No Suggested Reading articles found!