CLASSICAL AREAS OF PHENOMENOLOGY |
Prev
Next
|
|
|
Supercontinuous high harmonic generation from asymmetric molecules in the presence of a terahertz field |
Du Hong-Chuan(杜洪川)a), Wang Hui-Qiao(王慧巧)b), and Hu Bi-Tao(胡碧涛) a)† |
a School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; b Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China |
|
|
Abstract We have investigated high-order harmonic generation from asymmetric molecules. It is found that supercontinuous high harmonics, which are produced from asymmetric molecules by significantly steering the ionization, are broken down when the electric field of the 5-fs driving laser pulse is increased to 0.16 a.u. The high harmonic generation from asymmetric molecules with the presence of a terahertz field is also investigated. This reveals that the terahertz controlled laser pulse significantly increases the energy difference between photons, emitted from the ejected electrons, in the first and second halves of the optical cycle at the centre of the driving laser pulse. In this way, a 200-eV broadband supercontinuum can be produced in the plateau, from which a 60-as pulse with a bandwidth of 60 eV can be directly obtained with a minor post-pulse.
|
Received: 20 August 2010
Revised: 04 January 2011
Accepted manuscript online:
|
PACS:
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the Program for New Century Excellent Talents in University and the National Natural Science Foundation of China (Grant Nos. 10775062 and 10875054) and the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2010-k08). |
Cite this article:
Du Hong-Chuan(杜洪川), Wang Hui-Qiao(王慧巧), and Hu Bi-Tao(胡碧涛) Supercontinuous high harmonic generation from asymmetric molecules in the presence of a terahertz field 2011 Chin. Phys. B 20 044207
|
[1] |
Corkum P B and Krausz F 2007 Nature Phys. 3 381.
|
[2] |
Hentschel M, Kienberger R, Spielmann Ch, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature (London) 414 509
|
[3] |
Chang Z 2004 Phys. Rev. A 70 043802
|
[4] |
Carrera J J, Tong X M and Chu S I 2006 Phys. Rev. A 74 023404
|
[5] |
Scrinzi A, Ivanov M Yu, Kienberger R and Villeneuve D M 2006 J. Phys. B 39 R1
|
[6] |
Zou P, Li R X, Zeng Z N, Xiong H, Liu P, Liu Y X, Fan P Z and Xu Z Z 2010 Chin. Phys. B 19 019501
|
[7] |
Ye X, Zhou X, Zhao S and Li P 2008 Acta Phys. Sin. 58 1579 (in Chinese)
|
[8] |
Hong W, Yang Z, Lan P and Lu P 2008 Acta Phys. Sin. 57 5853 (in Chinese)
|
[9] |
Mashiko H, Gilbertson S, Chini M, Feng X, Yun C, Wang H, Khan S D, Chen S and Chang Z 2009 Opt. Lett. 34 3337
|
[10] |
Du H, Wang H and Hu B 2010 Phys. Rev. A 81 063813
|
[11] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[12] |
Lan P, Lu P, Cao W, Li Y and Wang X 2007 Phys. Rev. A 76 011402(R)
|
[13] |
Pfeifer T, Gallmann L, Abel M J, Nagel P M, Neumark D M and Leone S R 2006 Phys. Rev. Lett. 97 163901
|
[14] |
Lan P, Lu P, Cao W, Li Y and Wang X 2007 Phys. Rev. A 76 051801(R)
|
[15] |
Mashiko H, Gilbertson S, Li C, Khan S D, Shakya M M, Moon E and Chang Z 2008 Phys. Rev. Lett. 100 103906
|
[16] |
Du H and Hu B 2010 Opt. Express 18 25958
|
[17] |
Hong W, Wei P, Zhang Q, Wang S and Lu P 2010 Opt. Express 18 11308
|
[18] |
Kamta G L, Bandrauk A D and Corkum P B 2005 J. Phys. B 38 L339
|
[19] |
Lan P, Lu P, Cao W, Li Y and Wang X 2007 Phys. Rev. A 76 021801(R)
|
[20] |
Xie X, Dai J and Zhang X C 2006 Phys. Rev. Lett. 96 075005
|
[21] |
Kim K Y, Glownia J H, Taylor A J and Rodriguez G 2007 Opt. Express 15 4577
|
[22] |
Yu H, Zuo T and Bandrauk A D 1996 Phys. Rev. A 54 3290
|
[23] |
Kamta G L and Bandrauk A D 2005 Phys. Rev. Lett. 94 203003
|
[24] |
Lan P, Lu P, Li F, Li Q, Hong W, Zhang Q, Yang Z and Wang X 2008 Opt. Express 16 17542
|
[25] |
Stapelfeldt H and Seideman T 2003 Rev. Mod. Phys. 75 543
|
[26] |
Sakai H, Minemoto S, Nanjo H, Tanji H and Suzuki T 2003 Phys. Rev. Lett. 90 083001
|
[27] |
Goban A, Minemoto S and Sakai H 2008 Phys. Rev. Lett. 101 013001
|
[28] |
Yu H, Zuo T and Bandrauk A D 1996 Phys. Rev. A 54 3290
|
[29] |
Vafaee M, Sabzyan H, Vafaee Z and Katanforoush A 2006 Phys. Rev. A 74 043416
|
[30] |
Bellini M, Lynga C, Tozzi A, Gaarde M B, Häansch T W, L'Huillier A and Wahlstrom C G 1998 Phys. Rev. Lett. 81 297
|
[31] |
Paul P M, Toma E S, Breger P, Mullot G, Auge F, Balcou P, Muller H G and Agostini P 2001 Science 292 1689
|
[32] |
López-Martens R, Varju K, Johnsson P, Mauritsson J, Mairesse Y, Sali`eres P, Gaarde M, Schafer K, Persson A, Svanberg S, Wahlsträom C and L'Huillier A 2005 Phys. Rev. Lett. 94 033001
|
[33] |
Antoine P, L'Huillier A and Lewenstein M 1996 Phys. Rev. Lett. 77 1234balance endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|