Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 023101    DOI: 10.1088/1674-1056/20/2/023101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

A density-functional theory for (BAs)n clusters (n=1–14): structures, stabilities and electronic properties

Liu Zhi-Feng(刘志锋), Lei Xue-Ling(雷雪玲), Liu Li-Ren(刘立仁), Liu Huo-Yan(刘火雁), and Zhu Heng-Jiang(祝恒江)
School of Physics and Electronic Engineering, Xinjiang Normal University, Urumchi 830054, China
Abstract  This paper investigates the lowest-energy structures, stabilities and electronic properties of (BAs)n clusters (n=1–14) by means of the density-functional theory. The results show that the lowest-energy structures undergo a structural change from two-dimensional to three-dimensional when n=4. With the increase of the cluster size (n≥6), the (BAs)n clusters tend to adopt cage-like structures, which can be considered as being built from B2As2 and six-membered rings with B–As bond alternative arrangement. The binding energy per atom, second-order energy differences, vertical electron affinity and vertical ionization potential are calculated and discussed. The caculated HOMO–LUMO gaps reveal that the clusters have typical semiconductor characteristics. The analysis of partial density of states suggests that there are strong covalence and molecular characteristics in the clusters.
Keywords:  (BAs)n clusters      density-functional theory      lowest-energy structures      electronic properties  
Received:  24 July 2010      Revised:  22 August 2010      Accepted manuscript online: 
PACS:  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10964012), the Priority Subject Program for Theoretical Physics of Xinjiang Normal University and the Fund of the Education Department of Xinjiang Uygur Autonomous Region of China (Grant No. xjedu2009i27) and the Science and Technology Innovation Foundation for Graduate Students of Xinjiang Normal University (Grant No. 20101205).

Cite this article: 

Liu Zhi-Feng(刘志锋), Lei Xue-Ling(雷雪玲), Liu Li-Ren(刘立仁), Liu Huo-Yan(刘火雁), and Zhu Heng-Jiang(祝恒江) A density-functional theory for (BAs)n clusters (n=1–14): structures, stabilities and electronic properties 2011 Chin. Phys. B 20 023101

[1] Deshpande M D, Roy S and Kanhere D G 2007 Phys. Rev. B bf76 195423
[2] Chen X F, Zhang Y, Qi K T, Li B, Zhu Z H and Sheng Y 2010 Chin. Phys. B bf19 033601
[3] Tian F Y, Jing Q and Wang Y X 2008 Phys. Rev. A bf77 013202
[4] Lei X L, Zhu H J, Wang X M and Luo Y H 2008 Chin. Phys. B bf17 3687
[5] Rahane A, Deshpande M and Pandey R 2010 J. Nanopart. Res. bf12 727
[6] Sun L Z, Chen X S, Zhou X H, Sun Y L, Quan Z J and Lu W 2005 Euro. Phys. J. D bf34 47
[7] Korambath P P and Karna S P 2000 J. Phys. Chem. A bf104 4801
[8] Seeburrun N, Gohee P, Abdallah H H, Kanime L, Archibong E F and Ramasami P 2009 Chem. Phys. Lett. 472 35
[9] Zhao W, Cao P L and Duan W H 2006 Phys. Lett. A bf349 224
[10] Kandalam A K, Blanco M A and Pandey R 2002 J. Phys. Chem. B bf106 1945
[11] Zhao J J, Wang B L, Zhou X L, Chen X S and Lu W 2006 Chem. Phys. Lett. bf422 170
[12] Costales A and Pandey R 2003 J. Phys. Chem. A bf107 191
[13] Costales A, Kandalam A K, Franco R and Pandey R 2002 J. Phys. Chem. B bf106 1940
[14] Qu Y H, Ma W Y, Bian X F, Tang H W and Tian W X 2005 J. Mol. Graph. Model bf24 167
[15] Tozzini V, Buda F and Fasolino A 2001 J. Phys. Chem. B bf105 12477
[16] Ferhat M, Bouhafs B, Zaoui A and Aourag H 1998 J. Phys.: Condens. Matter bf10 7995
[17] Hart G L W and Zunger A 2000 Phys. Rev. B bf62 13522
[18] Phillips J C 1973 Bonds and Bands in Semiconductors (New York: Academic)
[19] Van Vechten J A and Phillips J C 1970 Phys. Rev. B bf2 2160
[20] Harrison W A 1980 Electronic Structure and the Properties of Solids (San Francisco: Freeman)
[21] Osugi J, Shimizu K, Tanaka Y and Kadono K 1966 Rev. Phys. Chem. Jpn. bf36 54
[22] Meradji H, Drablia S, Ghemid S, Belkhir H, Bouhafs B and Tadjer A 2004 Phys. Status Solidi B bf241 2881
[23] Wentzcovitch R M, Chang K J and Cohen M L 1986 Phys. Rev. B bf34 1071
[24] Wentzcovitch R M and Cohen M L 1986 J. Phys. C: Solid State Phys. bf19 6791
[25] Wentzcovitch R M, Cohen M L and Lam P K 1987 Phys. Rev. B bf36 6058
[26] Ahmed R, Hashemifar S J, Akbarzadeh H, Ahmed M and Aleem F 2007 Comput. Mater. Sci. bf39 580
[27] Burrill S and Grein F 2005 J. Mol. Struct.: Theochem bf757 137
[28] Liu L R, Lei X L, Chen H and Zhu H J 2009 Acta Phys. Sin. bf58 5355 (in Chinese)
[29] Lei X L, Wang Q L, Yan Y L, Zhao W J, Yang Z and Luo Y H 2007 Acta Phys. Sin. bf56 4484 (in Chinese)
[30] Lei X L, Zhu H J, Ge G X, Wang X M and Luo Y H 2008 Acta Phys. Sin. bf57 5491 (in Chinese)
[31] Yang Z, Yu Y L, Zhao W Z, Lei X L, Ge G X and Luo Y H 2007 Acta Phys. Sin. bf56 2590 (in Chinese)
[32] Guo L 2008 Comput. Mater. Sci. bf42 489
[33] Yang C L, Zhu Z H, Wang R and Liu X Y 2001 J. Mol. Struct.: Theochem bf548 47
[34] Lide D R 2006 CRC Handbook of Chemistry and Physics 87th edn. (New York: CRC Press) p. 82
[35] Rosen B 1970 Spectroscopic Data Relative to Diatomic Molecules (Oxford: Pergamon)
[36] Huber K and Herzberg G 1979 Molecular Spectra and Molecular Structure IV Constants of Diatomic Molecules (New York: Van Nostrand) p. 504
[37] Bosworth Y M, Clark R J H and Rippon D M 1973 J. Mol. Spectrosc. bf46 240
[38] Brumbach S B and Rosenblatt G 1972 J. Chem. Phys. bf56 3110
[39] Wyckoff R W G 1986 Crystal Structures 2nd edn. (Malabar: Krieger) endfootnotesize
[1] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[2] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[3] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[4] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[5] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[6] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[7] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[8] First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
Guoliang Xu(徐国亮), Jing Wang(王晶), Xilin Zhang(张喜林), and Zongxian Yang(杨宗献). Chin. Phys. B, 2022, 31(3): 037304.
[9] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[10] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[11] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[12] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[13] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[14] High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)
Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada. Chin. Phys. B, 2020, 29(6): 067901.
[15] Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons
Huakai Xu(许华慨), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(3): 037302.
No Suggested Reading articles found!