Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 021102    DOI: 10.1088/1674-1056/20/2/021102
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Prev   Next  

Conformal invariance and conserved quantities of Birkhoff systems under second-class Mei symmetry

Luo Yi-Ping(罗一平) and Fu Jin-Li(傅景礼)
Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract  This paper proposes a new concept of the conformal invariance and the conserved quantities for Birkhoff systems under second-class Mei symmetry. The definition about conformal invariance of Birkhoff systems under second-class Mei symmetry is given. The conformal factor in the determining equations is found. The relationship between Birkhoff system's conformal invariance and second-class Mei symmetry are discussed. The necessary and sufficient conditions of conformal invariance, which are simultaneously of second-class symmetry, are given. And Birkhoff system's conformal invariance may lead to corresponding Mei conserved quantities, which is deduced directly from the second-class Mei symmetry when the conformal invariance satisfies some conditions. Lastly, an example is provided to illustrate the application of the result.
Keywords:  second-class Mei symmetry      conformal invariance      conserved quantity      Birkhoff system  
Received:  25 July 2010      Revised:  14 September 2010      Accepted manuscript online: 
PACS:  11.30.-j (Symmetry and conservation laws)  
  02.40.Yy (Geometric mechanics)  
  02.20.Sv (Lie algebras of Lie groups)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11072218) and the Natural Science Foundation of Zhejiang Province of China (Grant No. Y6100337).

Cite this article: 

Luo Yi-Ping(罗一平) and Fu Jin-Li(傅景礼) Conformal invariance and conserved quantities of Birkhoff systems under second-class Mei symmetry 2011 Chin. Phys. B 20 021102

[1] Philippe Di Francesco, Pierre Mathieu and David S'en'echal 1997 Conformal Field Theory (New York: Springer-Verlag)
[2] Cunningham E 1909 Proceedings of the London Mathematical Society 8 77
[3] Bateman H 1909 Proceedings of the London Mathematical Society 8 223
[4] Galiullin A S, Gafarov G G, Malaishka R P and Khwan A M 1997 Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems (Moscow: UFN) (in Russian)
[5] Robert M L and Matthew P 2001 J. Geom. Phys. 39 276
[6] Cai J L and Mei F X 2008 Acta Phys. Sin. 57 5369 (in Chinese)
[7] Cai J L 2009 Acta Phys. Pol. A 115 854
[8] Zhang Y 2009 Chin. Phys. B 18 4636
[9] Liu C, Mei F X and Guo Y X 2008 Acta Phys. Sin. 57 6704 (in Chinese)
[10] Chen X W, Li Y M and Zhao Y H 2009 Chin. Phys. B 18 3139
[11] He G and Mei F X 2008 Chin. Phys. B 17 2764
[12] Luo Y P 2010 Chin. J. Phys. 48 17
[13] Guo Y X, Liu C and Mei F X 2009 Chin. Phys. B 18 395
[14] Li Y C, Wang X M and Xia L L 2009 Chin. Phys. B 18 4643
[15] Fang J H, Li Y, Lu K, Zhang K J and Zhang M J 2009 Chin. Phys. B 18 4650
[16] Mei F X 2000 Journal of Beijing Institute of Technology 9 120
[17] Cui J C, Jia L Q, Luo S K and Zhang Y Y 2009 Acta Phys. Sin. 58 2141 (in Chinese)
[18] Ding N and Fang J H 2009 Commun. Theor. Phys. 52 12
[19] Fang J H 2009 Acta Phys. Sin. 58 3617 (in Chinese)
[20] Jia L Q, Zhang Y Y, Cui J C and Luo S K 2009 Commun. Theor. Phys. 52 572
[21] Xie G X, Cui J C, Zhang Y Y and Jia L Q 2009 Chin. Phys. Lett. 26 631
[22] Zhang M J, Fang J H, Lin P, Lu K and Pang T 2009 Commun. Theor. Phys. 52 561
[23] Huang X H, Shi S Y and Zhang X B 2008 Acta Phys. Sin. 57 6056 (in Chinese)
[24] Ge W K 2008 Acta Phys. Sin. 57 6714 (in Chinese)
[25] Hou Q B, Jing H X, Li Y C, Wang J and Xia L L 2007 Chin. Phys. 16 1827
[26] Chen X W, Zhao Y H and Liu C 2009 Acta Phys. Sin. 58 5150 (in Chinese)
[27] Zhang H B, Chen L Q, Liu R W and Gu S L 2005 Acta Phys. Sin. 54 2489 (in Chinese)
[28] Ge W K and Mei F X 2009 Acta Phys. Sin. 58 699 (in Chinese)
[29] Zhang Y 2007 Acta Phys. Sin. 56 655 (in Chinese)
[30] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) endfootnotesize
[1] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[2] Discrete symmetrical perturbation and variational algorithm of disturbed Lagrangian systems
Li-Li Xia(夏丽莉), Xin-Sheng Ge(戈新生), Li-Qun Chen(陈立群). Chin. Phys. B, 2019, 28(3): 030201.
[3] Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales
Jing Song(宋静), Yi Zhang(张毅). Chin. Phys. B, 2017, 26(8): 084501.
[4] Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives
Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼). Chin. Phys. B, 2016, 25(1): 014501.
[5] Symmetries and variational calculationof discrete Hamiltonian systems
Xia Li-Li (夏丽莉), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Wu Jing-He (吴旌贺). Chin. Phys. B, 2014, 23(7): 070201.
[6] Noether symmetry and conserved quantity for a Hamilton system with time delay
Jin Shi-Xin (金世欣), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(5): 054501.
[7] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan (周燕), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(12): 124502.
[8] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi (孙毅), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(11): 110201.
[9] Conformal invariance, Noether symmetry, Lie symmetry and conserved quantities of Hamilton systems
Chen Rong (陈蓉), Xu Xue-Jun (许学军). Chin. Phys. B, 2012, 21(9): 094501.
[10] A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system
Cui Jin-Chao (崔金超), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群 ). Chin. Phys. B, 2012, 21(8): 080201.
[11] Symmetry of Lagrangians of holonomic nonconservative system in event space
Zhang Bin(张斌), Fang Jian-Hui(方建会), and Zhang Wei-Wei(张伟伟) . Chin. Phys. B, 2012, 21(7): 070208.
[12] Noether conserved quantities and Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices
Xia Li-Li(夏丽莉) and Chen Li-Qun(陈立群) . Chin. Phys. B, 2012, 21(7): 070202.
[13] Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system
Jia Li-Qun(贾利群), Zhang Mei-Ling(张美玲), Wang Xiao-Xiao(王肖肖), and Han Yue-Lin(韩月林) . Chin. Phys. B, 2012, 21(7): 070204.
[14] Symmetry of Lagrangians of a holonomic variable mass system
Wu Hui-Bin(吴惠彬) and Mei Feng-Xiang(梅凤翔) . Chin. Phys. B, 2012, 21(6): 064501.
[15] Mei symmetry and Mei conserved quantity of the Appell equation in a dynamical system of relative motion with non-Chetaev nonholonomic constraints
Wang Xiao-Xiao(王肖肖), Sun Xian-Ting(孙现亭), Zhang Mei-Ling(张美玲), Han Yue-Lin(韩月林), and Jia Li-Qun(贾利群) . Chin. Phys. B, 2012, 21(5): 050201.
No Suggested Reading articles found!