|
|
Cold cesium molecules produced directly in a magneto–optical trap |
Zhang Hong-Shan(张洪山), Ji Zhong-Hua(姬中华), Yuan Jin-Peng(元晋鹏), Zhao Yan-Ting(赵延霆)†, Ma Jie(马杰), Wang Li-Rong(汪丽蓉), Xiao Lian-Tuan(肖连团), and Jia Suo-Tang(贾锁堂) |
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Laser Spectroscopy Laboratory, College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We report on the observation of ultracold ground electric-state cesium molecules produced directly in a magneto- optical trap with a good signal-to-noise ratio. These molecules arise from the photoassociation of magneto-optical trap lasers and they are detected by resonantly enhanced multiphoton ionization technology. The production rate of ultracold cesium molecules is up to 4×104 s-1. We measure the characteristic time of the ground electric-state cesium molecules generated in the experiment and investigate the Cs2+ molecular ion intensity as a function of the trapping laser intensity and the ionization pulse laser energy. We conclude that the production of cold cesium molecules may be enhanced by using appropriate experimental parameters, which is useful for future experiments involving the production and trapping of ultracold ground electric-state molecules.
|
Received: 12 April 2011
Revised: 14 June 2011
Accepted manuscript online:
|
PACS:
|
37.10.Mn
|
(Slowing and cooling of molecules)
|
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
33.20.Xx
|
(Spectra induced by strong-field or attosecond laser irradiation)
|
|
Fund: Project supported by the National Key Fundamental Basic Research Program of China (Grant No. 2006CB921603), the Major Program of National Natural Science Foundation of China (Grant No. 10934004), the National Natural Science Foundation of China (Grant Nos. 60978018, 60808009, 61008012, and 60978001), the New Teacher Fund of the Ministry of Education of China (Grant No. 200801081021), the National Natural Science Foundation of China for Excellent Research Team (Grant No. 60821004), and the Natural Science Foundation of Shanxi Province of China (Grant No. 2009011059-2). |
Cite this article:
Zhang Hong-Shan(张洪山), Ji Zhong-Hua(姬中华), Yuan Jin-Peng(元晋鹏), Zhao Yan-Ting(赵延霆), Ma Jie(马杰), Wang Li-Rong(汪丽蓉), Xiao Lian-Tuan(肖连团), and Jia Suo-Tang(贾锁堂) Cold cesium molecules produced directly in a magneto–optical trap 2011 Chin. Phys. B 20 123702
|
[1] |
Raab E L, Prentiss M, Cable A, Chu S and Prirchard D E 1987 Phys. Rev. Lett. 59 23
|
[2] |
Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
|
[3] |
Lincoln D Carr, David DeMile, Roman V Krems and Jun Ye 2009 New J. Phys. 11 055049
|
[4] |
Weinstein J D, de Carvallho R, Guillet T, Friedrich B and Doyle J M 1998 Nature 395 148
|
[5] |
Bethlem H L, Berden G and Meijer G 1999 Phys. Rev. Lett. 83 1558
|
[6] |
Rangwala S A, Junglen T, Rieger T, Pinkse P W H and Rempe G 2003 Phys. Rev. A 67 43406
|
[7] |
Elioff M S, Valentini J J and Chandler D W 2003 Science 302 1940
|
[8] |
Koehler T, Goral K and Julienne P S 2006 Rev. Mod. Phys. 78 1311
|
[9] |
Jochim S, Bartenstein M, Altmeyer A, Hendl G, Chin C, Hecker Denschlag J and Grimm R 2006 Phys. Rev. Lett. 91 240402
|
[10] |
Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Gupta S, Hadzibabic Z and Ketterle W 2003 Phys. Rev. Lett. 91 250401
|
[11] |
Thorsheim H R, Weiner J and Julienne P S 1987 Phys. Rev. Lett. 58 2420
|
[12] |
Nikoliv A N, Ensher J R, Eyler E E, Wang H, Stwalley W C and Gould P L 2000 Phys. Rev. Lett. 84 246
|
[13] |
Sage J M, Sainis S, Bergeman T and DeMille D 2004 Phys. Rev. Lett. 94 203001
|
[14] |
Fioretti A, Comparat D, Crubellier A, Dulieu O, Masnou-Seeuws F and Pillet P 1998 Phys. Rev. Lett. 80 4402
|
[15] |
Lett P D, Helmerson K, Philips W D, Ratliff L P, Rolston S L and Wagshul M E 1993 Phys. Rev. Lett. 71 2200
|
[16] |
Miller J D, Cline R A and Heinzen D J 1993 Phys. Rev. Lett. 71 2204
|
[17] |
Zinner G, Binneweiss T, Reihle F and Tiemann E 2000 Phys. Rev. Lett. 85 2292
|
[18] |
Mancini M W, Telles G D, Caires A R L, Bagnato V S and Marcassa L G 2004 Phys. Rev. Lett. 92 133203
|
[19] |
Haimberger C, Kleinert J, Bhattacharya M and Bigelow N P 2004 Phys. Rev. A 70 021402
|
[20] |
Deiglmayr J, Grochola A, Repp M, Mortlbauer K, Gluck C, Lange J, Dulied O, Wester R and Weidumuller M 2008 Phys. Rev. Lett. 101 133004
|
[21] |
Caires A R L, Nascimento V A, Rezende D C J, Bagnato V S and Marcassa L G 2005 Phys. Rev. A 71 043403
|
[22] |
Zhao J M, Zhang L J, Feng Z G, Li C Y and Jia S T 2010 Chin. Phys. B 19 043202
|
[23] |
Zhang L J, Feng Z G, Li A L, Zhao J M, Li C Y and Jia S T 2009 Chin. Phys. B 18 1838
|
[24] |
Monroe C, Swann W, Robinson H and Wieman C E 1990 Phys. Rev. Lett. 65 1571
|
[25] |
Bohn J L and Julienne P S 1999 Phys. Rev. A 60 414
|
[26] |
Drag C, Tolra B L, Dulieu O, Comparat D, Vatasescu M, Boussen S, Guibal S, Crubellier A and Pillet P 2000 IEEE J. Quantum Electron. 36 1378
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|