Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 116803    DOI: 10.1088/1674-1056/20/11/116803
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Modeling of polycrystalline ZnO thin-film transistors with a consideration of the deep and tail states

Gao Hai-Xia(高海霞), Hu Rong(胡榕), and Yang Yin-Tang(杨银堂)
School of Microelectronics, Xidian University, Xi'an 710071 China
Abstract  We report a model of the carrier transport and the subgap density of states in a polycrystalline ZnO film for simulating a polycrystalline ZnO thin film transistor. This simple model considering the deep and the band tail states reproduces well the characteristics of polycrystalline ZnO thin film transistors. Furthermore, using the developed model, we study the effects of defect parameters on the electrical performances of the polycrystalline ZnO thin film transistors.
Keywords:  modeling      ZnO thin film transistor      deep state      band tail  
Received:  13 April 2011      Revised:  30 June 2011      Accepted manuscript online: 
PACS:  68.60.-p (Physical properties of thin films, nonelectronic)  
  73.50.-h (Electronic transport phenomena in thin films)  
  73.61.-r (Electrical properties of specific thin films)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. K50510250001).

Cite this article: 

Gao Hai-Xia(高海霞), Hu Rong(胡榕), and Yang Yin-Tang(杨银堂) Modeling of polycrystalline ZnO thin-film transistors with a consideration of the deep and tail states 2011 Chin. Phys. B 20 116803

[1] Jeon S J, Chang J W, Choi K S, Kar J P, Lee T I and Myoung J M 2011 Materials Science in Semiconductor Processing In Press
[2] Lu A, Sun J, Jiang J and Wan Q 2009 Appl. Phys. Lett. 95 222905
[3] Jeong J K 2011 Semicond. Sci. Tech. 26 034008
[4] Furuta M, Kamada Y, Kimura M, Hiramatsu T, Matsuda T, Li C, Furuta H, Fujita S and Hirao T 2010 IEEE Electron Device Lett. 31 1257
[5] Xiu F X, Yang Z, Mandalapu L J, Zhao D T, Liu J L and Beyermann W P 2005 Appl. Phys. Lett. 87 152101
[6] Shin P, Aya Y, Ikegami T and Ebihara K 2008 Thin Solid Films 516 3767
[7] Jia C, Chen Y, Liu G, Liu X, Yang S and Wang Z 2008 J. Crystal Growth 311 200
[8] Zhou Y M, He Y G, Lu A X and Wan Q 2009 Chin. Phys. B 18 3966
[9] Hossain F M, Nishii J, Takagi S, Ohtomo A, Fukumura T, Fujioka H, Ohno H, Koinuma H and Kawasaki M 2003 J. Appl. Phys. 94 7768
[10] Zhang A, Zhao X R, Duan L B, Liu J M and Zhao J L 2011 Chin. Phys. B 20 057201
[11] Dosev D 2003 Solid-State Electronics 47 1917
[12] Hsieh H H, Kamiya T, Nomura K, Hosono H and Wu C C 2008 Appl. Phys. Lett. 92 133503
[13] Zhang L, Zhang H, Bai Y, Ma J W, Cao J, Jiang X Y and Zhang Z L 2008 Solid State Commun. 146 387
[14] 2007 ATLAS User's Manual
[15] Fung T C, Chuang C S, Chen C, Abe K, Cottle R, Townsend M, Kumomi H and Kanicki J 2009 J. Appl. Phys. 96 10
[16] O'Leary S K 2004 J. Mater. Sci-Mater El. 15 401
[17] Takechi K, Nakata M, Eguchi T, Yamaguchi H and Kaneko S 2009 IEEE Tran. Electron Devices 56 2165
[18] Hara A and Sato T 2010 Jpn. J. Appl. Phys. 49 010203
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[3] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
[4] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[5] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[6] Parallel optimization of underwater acoustic models: A survey
Zi-jie Zhu(祝子杰), Shu-qing Ma(马树青), Xiao-Qian Zhu(朱小谦), Qiang Lan(蓝强), Sheng-Chun Piao(朴胜春), and Yu-Sheng Cheng(程玉胜). Chin. Phys. B, 2022, 31(10): 104301.
[7] An improved model of damage depth of shock-melted metal in microspall under triangular wave loading
Wen-Bin Liu(刘文斌), An-Min He(何安民), Kun Wang(王昆), Jian-Ting Xin(辛建婷), Jian-Li Shao(邵建立), Nan-Sheng Liu(刘难生), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 096202.
[8] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[9] A comparative study on radiation reliability of composite channel InP high electron mobility transistors
Jia-Jia Zhang(张佳佳), Peng Ding(丁芃), Ya-Nan Jin(靳雅楠), Sheng-Hao Meng(孟圣皓), Xiang-Qian Zhao(赵向前), Yan-Fei Hu(胡彦飞), Ying-Hui Zhong(钟英辉), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(7): 070702.
[10] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[11] Design and management of lithium-ion batteries: A perspective from modeling, simulation, and optimization
Qian-Kun Wang(王乾坤), Jia-Ni Shen(沈佳妮), Yi-Jun He(贺益君), Zi-Feng Ma(马紫峰). Chin. Phys. B, 2020, 29(6): 068201.
[12] Overview of finite elements simulation of temperature profile to estimate properties of materials 3D-printed by laser powder-bed fusion
Habimana Jean Willy, Xinwei Li(李辛未), Yong Hao Tan, Zhe Chen(陈哲), Mehmet Cagirici, Ramadan Borayek, Tun Seng Herng, Chun Yee Aaron Ong, Chaojiang Li(李朝将), Jun Ding(丁军). Chin. Phys. B, 2020, 29(4): 048101.
[13] Dark count in single-photon avalanche diodes: A novel statistical behavioral model
Wen-Juan Yu(喻文娟), Yu Zhang(张钰), Ming-Zhu Xu(许明珠), Xin-Miao Lu(逯鑫淼). Chin. Phys. B, 2020, 29(4): 048503.
[14] General principles to high-throughput constructing two-dimensional carbon allotropes
Qing Xie(谢庆), Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2020, 29(3): 037306.
[15] Quantitative modeling of bacterial quorum sensing dynamics in time and space
Xiang Li(李翔), Hong Qi(祁宏), Xiao-Cui Zhang(张晓翠), Fei Xu(徐飞), Zhi-Yong Yin(尹智勇), Shi-Yang Huang(黄世阳), Zhao-Shou Wang(王兆守)†, and Jian-Wei Shuai(帅建伟)‡. Chin. Phys. B, 2020, 29(10): 108702.
No Suggested Reading articles found!