Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 048101    DOI: 10.1088/1674-1056/ab6d4e
REVIEW Prev   Next  

Overview of finite elements simulation of temperature profile to estimate properties of materials 3D-printed by laser powder-bed fusion

Habimana Jean Willy, Xinwei Li(李辛未), Yong Hao Tan, Zhe Chen(陈哲), Mehmet Cagirici, Ramadan Borayek, Tun Seng Herng, Chun Yee Aaron Ong, Chaojiang Li(李朝将), Jun Ding(丁军)
Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
Abstract  Laser powder bed fusion (LPBF), like many other additive manufacturing techniques, offers flexibility in design expected to become a disruption to the manufacturing industry. The current cost of LPBF process does not favor a try-and-error way of research, which makes modelling and simulation a field of superior importance in that area of engineering. In this work, various methods used to overcome challenges in modeling at different levels of approximation of LPBF process are reviewed. Recent efforts made towards a reliable and computationally effective model to simulate LPBF process using finite element (FE) codes are presented. A combination of ray-tracing technique, the solution of the radiation transfer equation and absorption measurements has been used to establish an analytical equation, which gives a more accurate approximation of laser energy deposition in powder-substrate configuration. When this new analytical energy deposition model is used in in FE simulation, with other physics carefully set, it enables us to get reliable cooling curves and melt track morphology that agree well with experimental observations. The use of more computationally effective approximation, without explicit topological changes, allows to simulate wider geometries and longer scanning time leading to many applications in real engineering world. Different applications are herein presented including: prediction of printing quality through the simulated overlapping of consecutive melt tracks, simulation of LPBF of a mixture of materials and estimation of martensite inclusion in printed steel.
Keywords:  selective laser melting      powder bed fusion      finite element modeling      laser absorption  
Received:  30 May 2019      Revised:  15 January 2020      Accepted manuscript online: 
PACS:  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  
  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
  47.11.Fg (Finite element methods)  
  42.55.Ah (General laser theory)  
Fund: Project supported by Singapore Maritime Institute and the Advanced Material & Manufacturing R&D Program (Grant Nos. SMI-2016-OF-04 and R261502032592).
Corresponding Authors:  Jun Ding     E-mail:  msedingj@nus.edu.sg

Cite this article: 

Habimana Jean Willy, Xinwei Li(李辛未), Yong Hao Tan, Zhe Chen(陈哲), Mehmet Cagirici, Ramadan Borayek, Tun Seng Herng, Chun Yee Aaron Ong, Chaojiang Li(李朝将), Jun Ding(丁军) Overview of finite elements simulation of temperature profile to estimate properties of materials 3D-printed by laser powder-bed fusion 2020 Chin. Phys. B 29 048101

[1] Petrick I J and Simpson T W 2013 Research-Technology Management 56 12
[2] Berman B 2012 Bus. Horiz. 55 155
[3] Liu H, Liu M, Chang J and Su T 2013 Acta Phys. Sin. 62 64705 (in Chinese)
[4] Hao G, Wang X and Li X 2015 Chin. Phys. Lett. 32 026103
[5] Jacob G, Donmez A, Slotwinski J and Moylan S 2016 Meas. Sci. Technol. 27 115601
[6] Li N, Lü X and Weng J 2018 Acta Phys. Sin. 67 057801 (in Chinese)
[7] Yin P, Zhang R, Liu Q, Hu J, Li Y and Li N 2013 Chin. Phys. Lett. 30 098104
[8] Khairallah S A, Anderson A T, Rubenchik A and King W E 2016 Acta Mater. 108 36
[9] Matilainen V P, Piili H, Salminen A and Nyrhilä O 2015 Phys. Procedia 78 377
[10] Taheri Andani M, Dehghani R, Karamooz-Ravari M R, Mirzaeifar R and Ni J 2017 Mater. Des. 131 460
[11] Semak V and Matsunawa A 1997 J. Phys. D. Appl. Phys. 30 2541
[12] Assouroko I, Lopez F and Witherell P 2016 Proceedings of the Asme International Mechanical Engineering Congress and Exposition 2 UNSP V002T02A068
[13] Fu C H, Guo Y B and Sealy M P 2014 J. Mater. Proc. Technol. 214 2926
[14] Promoppatum P, Yao S C, Pistorius P C and Rollett A D 2017 Engineering 3 685
[15] Yin J, Zhu H, Ke L, Hu P, He C, Zhang H and Zeng X 2016 Int. J. Adv. Manuf. Technol. 83 1847
[16] Zeng K, Pal D, Gong H J, Patil N and Stucker B 2015 Mater. Sci. Technol. 31 945
[17] Boley C D, Mitchell S C, Rubenchik A M and Wu S S Q 2016 Appl. Opt. 55
[18] Gusarov A V and Smurov I 2010 Phys. Procedia 5 381
[19] Antony K, Arivazhagan N and Senthilkumaran K 2014 J. Manuf. Process 16 345
[20] Han Q, Setchi R, Lacan F, Gu D and Evans S L 2017 Mater. Sci. Eng. A 698 162
[21] Gürtler F J, Karg M, Leitz K H and Schmidt M 2013 Phys. Procedia 41 881
[22] Li Y and Gu D 2014 Addit. Manuf. 1 99
[23] Martin A A, Calta N P, Khairallah S A, Wang J, Depond P J, Fong A Y, Thampy V, Guss G M, Kiss A M, Stone K H, Tassone C J, Nelson Weker J, Toney M F, van Buuren T and Matthews M J 2019 Nat. Commun. 10 1
[24] Zhao C, Fezzaa K, Cunningham R W, Wen H, De Carlo F, Chen L, Rollett A D and Sun T 2017 Sci. Rep. 7 1
[25] Escano L I, Parab N D, Xiong L, Guo Q, Zhao C, Fezzaa K, Everhart W, Sun T and Chen L 2018 Sci. Rep. 8 1
[26] Craeghsa T, Clijstersa S, Krutha J P, Bechmannb F and Ebertb M C 2012 Phys. Procedia 39 753
[27] Ye D, Zhu K, Fuh J Y H, Zhang Y and Soon H G 2019 Opt. Laser Technol. 111 395
[28] Leung C L A, Marussi S, Atwood R C, Towrie M, Withers P J and Lee P D 2018 Nat. Commun. 9 1
[29] Guo Q, Zhao C, Escano L I, Young Z, Xiong L, Fezzaa K, Everhart W, Brown B, Sun T and Chen L 2018 Acta Mater. 151 169
[30] Wang D, Wu S, Fu F, Mai S, Yang Y, Liu Y and Song C 2017 Mater. Des. 117 121
[31] Xia M, Gu D, Yu G, Dai D, Chen H and Shi Q 2017 Int. J. Mach. Tools Manuf. 116 96
[32] Pei W, Zhengying W, Zhen C, Junfeng L, Shuzhe Z and Jun D 2017 Appl. Phys. A 123 540
[33] Klocke F, Wagner C and Klocke F 2003 CIRP Ann. 52 177
[34] Willy H J, Li X, Chen Z, Herng T S, Chang S, Ong C Y A, Li C and Ding J 2018 Mater. Des. 157 24
[35] Mills K C 2002 Woodhead Publishing Series in Metals and Surface Engineering: Recommended Values Thermophysical Properties for Selected Commercial Alloys pp. 135-142
[36] Li X, Willy H J, Chang S, Lu W, Herng T S and Ding J 2018 Mater. Des. 145 1
[37] Dezfoli A R A, Hwang W S, Huang W C and Tsai T W 2017 Sci. Rep. 7 41527
[38] Li X, Tan Y H, Willy H J, Wang P, Lu W, Cagirici M, Ong C Y A, Herng T S and Ding J 2019 Mater. Des. 178 107881
[39] Wang L, Wei Q S, Shi Y S, Liu J H and He W T 2011 Adv. Mater. Res. 233-235 2844
[40] Campanelli S L, Casalino G, Contuzzi N, Angelastro A and Ludovico A D 2014 SPIE 8963 896311
[41] Gong H, Rafi K, Gu H, Janaki Ram G D, Starr T and Stucker B 2015 Mater. Des. 86 545
[42] Hann D B, Iammi J and Folkes J 2011 J. Phys. D. Appl. Phys. 44 445401
[43] Prashanth K G, Scudino S, Maity T, Das J and Eckert J 2017 Mater. Res. Lett. 5 386
[44] Scipioni Bertoli U, Wolfer A J, Matthews M J, Delplanque J P R and Schoenung J M 2017 Mater. Des. 113 331
[45] Barlow A J, Maire P H, Rider W J, Rieben R N and Shashkov M J 2016 J. Comput. Phys. 322 603
[46] COMSOL Inc 2017 COMSOL Multiphysics Modeling Software
[47] Loh L E, Chua C K, Yeong W Y, Song J, Mapar M, Sing S L, Liu Z H and Zhang D Q 2015 Int. J. Heat Mass Transf. 80 288
[48] Xia M, Wang P, Zhang X H and Ge C C 2018 Acta Phys. Sin. 67 170201 (in Chinese)
[49] Iguchi M and Ilegbusi O J 2011 Model. Multiphase Materials Processes: Gas-liquid Systems (Berlin: Springer) pp. 30-100
[50] Yafei S, Yongjun T, Jing S and Dongjie N 2009 Chin. Cont. Decis. Conf. p 3756
[51] Sih S S and Barlow J W 2004 Part. Sci. Technol. 22 427
[52] Gu D and Yuan P 2015 J. Appl. Phys. 118 233109
[53] Dutil Y, Rousse D R, Ben N, Lassue S and Zalewski L 2011 Renew. Sustain. Energy Rev. 15 112
[54] Gusarov A V and Kovalev E P 2009 Phys. Rev. B 80 024202
[55] Bruggeman D A G 1935 Ann. Phys. 416 636
[56] Bruyere V, Touvrey C and Namy P 2014 Proc. 2014 COMSOL Conf. 1 1
[57] Willy H J 2017 Proc. 2017 COMSOL Conf. 1 1
[58] Li Y and Gu D 2014 Mater. Des. 63 856
[59] Liu Y, Zhang J and Pang Z 2018 Opt. Laser Technol. 98 23
[60] Hussein A, Hao L, Yan C and Everson R 2013 Mater. Des. 52 638
[61] Ganeriwala R and Zohdi T I 2016 Granular Matter 18 1273
[62] Li X and Tan W 2016 Proc. 27th Ann. Int. SFF Conf. 1 219
[63] Boley C D, Khairallah S A and Rubenchik A M 2015 Appl. Opt. 54 2477
[64] Bergström D, Powell J and Kaplan A F H 2007 Appl. Surf. Sci. 253 5017
[65] Moser D, Pannala S and Murthy J 2015 JOM 67 1194
[66] Yang Y, Gu D, Dai D and Ma C 2018 Mater. & Design 143 12
[67] Gusarov A V and Kruth J P 2005 Int. J. Heat Mass Transf. 48 3423
[68] Gusarov A V 2010 Quantum Electron. 40 451
[69] Angle J P, Wang Z, Dames C and Mecartney M L 2013 J. Am. Ceram. Soc. 96 2935
[70] Ma M, Wang Z, Gao M and Zeng X 2015 J. Mater. Process. Technol. 215 142
[71] Gallina D 2011 Eng. Fail. Anal. 18 2250
[72] Hua H, Shin J and Kim J 2014 J. Fluids Eng. 136 021301
[73] Leitz K H, Singer P, Plankensteiner A, Tabernig B, Kestler H and Sigl L S 2018 Met. Powder. Rep. 72 332
[1] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[2] Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing
Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君). Chin. Phys. B, 2021, 30(4): 044210.
[3] Laser absorption spectroscopy for high temperature H2O time-history measurement at 2.55 μm during oxidation of hydrogen
Yu-Dan Gou(苟于单), De-Xiang Zhang(张德翔), Yi-Jun Wang(王易君), Chang-Hua Zhang(张昌华), Ping Li(李萍), Xiang-Yuan Li(李象远). Chin. Phys. B, 2018, 27(7): 074213.
[4] Measurements of argon metastable density using the tunable diode laser absorption spectroscopy in Ar and Ar/O2
Dao-Man Han(韩道满), Yong-Xin Liu(刘永新), Fei Gao(高飞), Wen-Yao Liu(刘文耀), Jun Xu(徐军), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(6): 065202.
[5] Experimental and numerical studies of nonlinear ultrasonic responses on plastic deformation in weld joints
Yan-Xun Xiang(项延训), Wu-Jun Zhu(朱武军), Ming-Xi Deng(邓明晰), Fu-Zhen Xuan(轩福贞). Chin. Phys. B, 2016, 25(2): 024303.
[6] Absorption of ultrashort intense lasers in laser-solid interactions
Sheng Zheng-Ming (盛政明), Weng Su-Ming (翁苏明), Yu Lu-Le (於陆勒), Wang Wei-Min (王伟民), Cui Yun-Qian (崔云千), Chen Min (陈民), Zhang Jie (张杰). Chin. Phys. B, 2015, 24(1): 015201.
[7] Dynamic thermal modeling and parameter identification for monolithic laser diode module
Li Jin-Yi (李金义), Du Zhen-Hui (杜振辉), Ma Yi-Wen (马艺闻), Xu Ke-Xin (徐可欣). Chin. Phys. B, 2013, 22(3): 034203.
[8] Calibration-free wavelength modulation spectroscopy for gas concentration measurements under low-absorbance conditions
Che Lu (车璐), Ding Yan-Jun (丁艳军), Peng Zhi-Min (彭志敏), Li Xiao-Hang (李晓航). Chin. Phys. B, 2012, 21(12): 127803.
[9] Low temperature laser absorption spectra of methane in the near-infrared at 1.65 μm for lower state energy determination
Gao Wei(高伟), Chen Wei-Dong(陈卫东), Zhang Wei-Jun(张为俊), Yuan Yi-Qian(袁怿谦), and Gao Xiao-Ming(高晓明) . Chin. Phys. B, 2012, 21(1): 014211.
[10] The relation between composition in laser absorption region and ambient pressure
Yang Bo(杨波), Zhu Jin-Rong(朱金荣), Yang Yan-Nan(杨雁南), Shen Zhong-Hua(沈中华), Lu Jian(陆建), and Ni Xiao-Wu(倪晓武) . Chin. Phys. B, 2008, 17(1): 199-204.
[11] Application of $\alpha$-$\beta$-$\gamma$ filtering to real-time atmosphere methane concentration measurement
Kan Rui-Feng (阚瑞峰), Liu Wen-Qing (刘文清), Zhang Yu-Jun (张玉钧), Liu Jian-Guo (刘建国), Chen Dong (陈东), Wang Min (王敏). Chin. Phys. B, 2006, 15(6): 1379-1383.
[12] Influence of laser intensity in second-harmonic detection with tunable diode laser multi-pass absorption spectroscopy
Kan Rui-Feng (阚瑞峰), Dong Feng-Zhong (董凤忠), Zhang Yu-Jun (张玉钧), Liu Jian-Guo (刘建国), Liu Cheng (刘诚), Wang Min (王敏), Gao Shan-Hu (高山虎), Chen Jun (陈军). Chin. Phys. B, 2005, 14(9): 1904-1909.
No Suggested Reading articles found!