|
|
Measurement-induced disturbance and nonequilibrium thermal entanglement in a qutrit–qubit mixed spin XXZ model |
Chen Li(陈丽)a), Shao Xiao-Qiang(邵晓强)a), and Zhang Shou(张寿)a)b)† |
a Centre for the Condensed-Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150001, China; b Department of Physics, College of Science, Yanbian University, Yanji 133002, China |
|
|
Abstract We investigate the dynamics of nonequilibrium thermal quantum correlation of a qutrit-qubit mixed spin system coupled to two bosonic reservoirs at different temperatures using measurement-induced disturbance. The effects of initial states of the spins and temperatures of the reservoirs on measurement-induced disturbance and entanglement are discussed. The results demonstrate that measurement-induced disturbance is more robust than entanglement against the influence of both these factors and there is no sudden death phenomenon for measurement-induced disturbance. The dependences of steady-state measurement-induced disturbance and entanglement on coupling constant and anisotropy parameter are also studied. Steady-state entanglement vanishes for a ferromagnetic qutrit-qubit model, while steady-state measurement-induced disturbance exists for both the antiferromagnetic and ferromagnetic cases. Appropriately modulating the coupling constant and anisotropy parameter can strengthen quantum correlation.
|
Received: 16 March 2011
Revised: 27 May 2011
Accepted manuscript online:
|
PACS:
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61068001 and 11064016). |
Cite this article:
Chen Li(陈丽), Shao Xiao-Qiang(邵晓强), and Zhang Shou(张寿) Measurement-induced disturbance and nonequilibrium thermal entanglement in a qutrit–qubit mixed spin XXZ model 2011 Chin. Phys. B 20 100311
|
[1] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[2] |
Tao Y J, Tian D P, Hu M L and Qin M 2008 Chin. Phys. B 17 624
|
[3] |
Liang M L and Yuan B 2010 Chin. Phys. B 19 094206
|
[4] |
Zheng S B 2010 Chin. Phys. B 19 064204
|
[5] |
Horodecki M, Horodecki P, Horodecki R, Oppenheim J, Sen A, Sen U and Synak-Radtke B 2005 Phys. Rev. A 71 062307
|
[6] |
Niset J and Cerf N J 2006 Phys. Rev. A 74 052103
|
[7] |
Ahn J, Weinacht T C and Bucksbaum P H 2000 Science 287 463
|
[8] |
Braunstein S L, Caves C M, Jozsa R, Linden N, Popescu S and Schack R 1999 Phys. Rev. Lett. 83 1054
|
[9] |
Meyer D A 2000 Phys. Rev. Lett. 85 2014
|
[10] |
Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
|
[11] |
Lanyon B P, Barbicri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
|
[12] |
Ollivier H and Zurek W H 2002 Phys. Rev. Lett. 88 017901
|
[13] |
Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
|
[14] |
Vedral V 2003 Phys. Rev. Lett. 90 050401
|
[15] |
Oppenheim J, Horodecki M, Horodecki P and Horodecki R 2002 Phys. Rev. Lett. 89 180402
|
[16] |
Luo S L 2008 Phys. Rev. A 77 022301
|
[17] |
Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
|
[18] |
Luo S L 2008 Phys. Rev. A 77 042303
|
[29] |
Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
|
[20] |
Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 81 014101
|
[21] |
Lu X M, Ma J, Xi Z and Wang X 2011 Phys. Rev. A 83 012327
|
[22] |
Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 024103
|
[23] |
Ali M 2010 J. Phys. A: Math. Theor. 43 495303
|
[24] |
Wang L C, Yan J Y and Yi X X 2011 Chin. Phys. B 20 040305
|
[25] |
Chen Q Y, Fang M F, Xiao X and Zhou X F 2011 Chin. Phys. B 20 050302
|
[26] |
Zhang G F, Jiang Z T and Abliz A 2011 Ann. Phys. 326 867
|
[27] |
Zhang G F, Hou Y C and Ji A L 2011 Solid State Commun. 151 790
|
[28] |
Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
|
[29] |
Wang Q, Liao J Q and Zeng H S 2010 Chin. Phys. B 19 100311
|
[30] |
Bose S 2003 Phys. Rev. Lett. 91 207901
|
[31] |
Kane B E 1998 Nature 393 133
|
[32] |
Imamoglu A, Knill E, Tian L and Zoller P 2003 Phys. Rev. Lett. 91 017402
|
[33] |
van Koningsbruggen P J, Kahn O, Nakatani K, Pei Y, Renard J P, Drillon M and Legoll P 1990 Inorg. Chem. 29 3325
|
[34] |
Goldman M 2001 J. Magn. Reson. 149 160
|
[35] |
Plenio M B 2005 Phys. Rev. Lett. 95 090503
|
[36] |
.Zyczkowski K, Horodecki P, Sanpera A and Lewenstein M 1998 Phys. Rev. A 58 883
|
[37] |
Sinaysky I, Petruccione F and Burgarth D 2008 Phys. Rev. A 78 062301
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|