Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 014301    DOI: 10.1088/1674-1056/20/1/014301
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Band gap control of phononic beam with negative capacitance piezoelectric shunt

Chen Sheng-Bing(陈圣兵),Wen Ji-Hong(温激鸿),Yu Dian-Long(郁殿龙), Wang Gang(王刚),and Wen Xi-Sen(温熙森)
Institute of Mechatronical Engineering, National University of Defense Technology, Changsha 410073, China; Key Laboratory of Photonic and Phononic Crystal of Ministry of Education, National University of Defense Technology, Changsha 410073, China
Abstract  Periodic arrays of negative capacitance shunted piezoelectric patches are employed to control the band gaps of phononic beams. The location and the extent of induced band gap depend on the mismatch in impedance generated by each patch. The total impedance mismatch is determined by the added mass and stiffness of each patch as well as the shunting electrical impedance. Therefore, the band gap of the shunted phononic beam can be actively tuned by appropriately selecting the value of negative capacitance. The control of the band gap of phononic beam with negative capacitive shunt is demonstrated numerically by employing transfer matrix method. The result reveals that using negative capacitive shunt to tune the band gap is effective.
Keywords:  phononic crystal      band gap      negative capacitive shunt      piezoelectric beam  
Received:  20 May 2010      Revised:  23 June 2010      Accepted manuscript online: 
PACS:  43.20.+g (General linear acoustics)  
  43.40+s  
  02.60.-x (Numerical approximation and analysis)  
  77.65.-g  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50875255 and 10902123).

Cite this article: 

Chen Sheng-Bing(陈圣兵), Wen Ji-Hong(温激鸿), Yu Dian-Long(郁殿龙), Wang Gang(王刚), and Wen Xi-Sen(温熙森) Band gap control of phononic beam with negative capacitance piezoelectric shunt 2011 Chin. Phys. B 20 014301

[1] Forward R L 1979 J. Appl. Opt. 18 690
[2] Hagood N and Von Flotow A 1991 J. Sound Vib. 146 243
[3] Wu S Y 1998 Proc. SPIE 3327 159
[4] HollKamp J J 1994 J. Intell. Mater. Syst. Struct. 5 49
[5] Park J and Palumbo D L 2004 Proc. Active 2004 Conf. (VA: Williamsburg)
[6] Behrens S, Fleming A J and Moheimani S O R 2003 Smart Mater. Struct. 12 18
[7] Park C H and Baz A 2005 J. Vib. Control 11 331
[8] Li X C, Liang H Y, Yi X Y, Xiao X W and Zhao B X 2007 Acta Phys. Sin. 56 2784 (in Chinese)
[9] Mou Z F, Wu F G, Zhang X and Zhong H L 2007 Acta Phys. Sin. 56 4694 (in Chinese)
[10] Cai L, Han X Y and Wen X S 2008 Acta Phys. Sin. 57 1746 (in Chinese)
[11] Fang J Y, Yu D L, Han X Y and Cai L 2009 Chin. Phys. B 18 1316
[12] Wen J H, Yu D L, Xiao Y and Wen X S 2009 Chin. Phys. B 18 2404
[13] Zhao H G, Wen J H, Liu Y Z, Yu D L, Wang G and Wen X S 2008 Chin. Phys. B 17 1305
[14] Ruzzene M and Baz A 2000 Proc. SPIE 3991 389
[15] Baz A 2001 J. Vibration and Acoustics. 123 472
[16] Thorp O, Ruzzene M and Baz A 2001 Proc. SPIE 4331 218
[17] Thorp O, Ruzzene M and Baz A 2005 Smart Mater. Struct. bf14 594
[18] Spadoni A, Ruzzene M and Cunefare K A 2009 J. Intell. Mater. Syst. Struct. 20 979
[19] Casadei F, Ruzzene M, Dozio L and Cunefare K A 2010 Smart Mater. Struct. 19 015002
[20] Chen S B, Han X Y, Yu D L and Wen J H 2010 Acta Phys. Sin. bf 59 387 (in Chinese)
[21] Zhang B X, Yu M, Lan C Q and Xiong W 1996 J. Acoust. Soc. Am. 100 3527
[22] Li Y M and Shu P Y 1982 Chin. J. Geophys. 25 130 (in Chinese)
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[3] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[4] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[5] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[6] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[7] Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon
Ya-Bin Ma(马亚斌), Tao Ouyang(欧阳滔), Yuan-Ping Chen(陈元平), and Yue-E Xie(谢月娥). Chin. Phys. B, 2021, 30(7): 077103.
[8] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[9] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[10] Accurate GW0 band gaps and their phonon-induced renormalization in solids
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2021, 30(11): 117101.
[11] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
[12] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[13] Photoluminescence in wide band gap corundum Mg4Ta2O9 single crystals
Liang Li(李亮), Yu-Lu Zheng(郑雨露), Yu-Xin Hu(胡雨馨), Fang-Fei Li(李芳菲), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(8): 083301.
[14] Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology
Mohd. Shkir, Ziaul Raza Khan, T Alshahrani, Kamlesh V. Chandekar, M Aslam Manthrammel, Ashwani Kumar, and S AlFaify$. Chin. Phys. B, 2020, 29(11): 116102.
[15] One-dimensional structure made of periodic slabs of SiO2/InSb offering tunable wide band gap at terahertz frequency range
Sepehr Razi, Fatemeh Ghasemi. Chin. Phys. B, 2019, 28(12): 124205.
No Suggested Reading articles found!