Einstein–Podolsky–Rosen entanglement in time-dependent broadband pumping frequency non-degenerate optical parametric amplifier
Zhao Chao-Ying(赵超樱)a)b)† and Tan Wei-Han(谭维翰)c)
a The College of Science, Hangzhou Dianzi University, Hangzhou 310018, China; b State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China; cDepartment of Physics, Shanghai University, Shanghai 200444, China
Abstract This paper investigates quantum fluctuations characteristic of time-dependent broadband pumping frequency non-degenerate optical parametric amplifier for below and above threshold regions. It finds that a high squeezing and entanglement can be achieved.
Fund: Project supported by the State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, China (Grant No. 200904).
Cite this article:
Zhao Chao-Ying(赵超樱) and Tan Wei-Han(谭维翰) Einstein–Podolsky–Rosen entanglement in time-dependent broadband pumping frequency non-degenerate optical parametric amplifier 2011 Chin. Phys. B 20 010305
[1]
Stappaerts E A, Komine H and Long Jr W H 1980 Opt. Lett. 5 4
[2]
H'etet G, Gl"ockl O, Pilypas K A, Harb C C, Buchler B C, Bachor H A and Lam P K 2007 J. Phys. B: At. Mol. Opt. Phys. 40 221
[3]
Golubeva T, Ivanov D and Golubev Yu 2008 Phys. Rev. A 77 052316
[4]
Braunstein S L and Loock P V 2005 Rev. Mod. Phys. 77 513
[5]
Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[6]
Li X Y, Pan Q, Jing J T, Zhang J, Xie C D and Peng K C 2002 Phys. Rev. Lett. 88 047904
[7]
Zhang J, Xie C D and Peng K C 2003 Europhys. Lett. 61 579
[8]
Hirano T, Kotani K, Ishibashi T, Okude S and Kuwamoto T 2005 Opt. Lett. 30 1722
[9]
Takeno Y, Yukawa M, Yonezawa H and Furusawa A 2007 Opt. Express 15 4321
[10]
Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Goβler S, Danzmann K and Schnabel R 2008 Phys. Rev. Lett. 100 033602
[11]
Kim C and Kumar P 1994 wxPhys. Rev. Lett.73 1605
[12]
Werner M J, Raymer M G, Beck M and Drummond P D 1995 Phys. Rev. A 52 4202
[13]
Yu C X, Haus H A and Ippen E P 2001 Opt. Lett. 26 669
[14]
Wenger J, Tualle-Brouri R and Grangier P 2004 Opt. Lett. 29 1267
[15]
Eto Y, Tajima T, Zhang Y and Hirano T 2007 Opt. Lett. 32 1698
[16]
Zhao C Y and Tan W H 2006 J. Mod. Opt. 53 1965
[17]
Zhao C Y and Tan W H 2006 J.Opt. Soc. Am. B 23 2174
[18]
Zhao C Y and Tan W H 2007 J. Mod. Opt. 54 97
[19]
Zhao C Y and Tan W H 2007 Chin. Phys. 16 644
[20]
Zhao C Y and Tan W H 2009 Chin. Phys. B 18 4143
[21]
Walls D F and Milburn G J 1994 Quantum Optics (2nd ed.) (New York: Springer)
[22]
Reid M D and Drummond P D 1989 Phys. Rev. A 40 4493
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.