Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 097307    DOI: 10.1088/1674-1056/19/9/097307
RAPID COMMUNICATION Prev   Next  

Fabrication of suspended graphene devices and their electronic properties

Li Qiang(李强)a), Cheng Zeng-Guang(程增光)b), Li Zhong-Jun(李忠军)b), Wang Zhi-Hua(王志华)a)†, and Fang Ying(方英)b)‡
a State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; b National Center for Nanoscience and Technology, Beijing 100190, China
Abstract  Suspended graphene devices are successfully fabricated by using a novel PMMA/MMA/PMMA tri-layer resist technique. The gap between graphene and dielectric substrate can be easily controlled by the thickness of the bottom PMMA layer, and no wet-etching with hazardous hydrofluoric acid is involved in our fabrication process. Electrical characterizations on suspended graphene devices are performed in vacuum when in-situ current annealing directly leads to a significant improvement on transport properties of graphene, i.e., the increase of carrier mobility with the reduction of width of Dirac peak. Our results make a new opportunity to study intrinsic properties of graphene.
Keywords:  graphene      transport      suspension      high mobility  
Received:  05 April 2010      Revised:  04 May 2010      Accepted manuscript online: 
PACS:  7340T  
  7360F  
  7360J  
Fund: Project supported by the Special Presidential Foundation of the Chinese Academy of Sciences, China (Grant No. 08172911ZX), the National Basic Research Program of China (Grant No. 2009CB930200), and the National Natural Science Foundation of China (Grant No. 20973045).

Cite this article: 

Li Qiang(李强), Cheng Zeng-Guang(程增光), Li Zhong-Jun(李忠军), Wang Zhi-Hua(王志华), and Fang Ying(方英) Fabrication of suspended graphene devices and their electronic properties 2010 Chin. Phys. B 19 097307

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Geim A K 2009 Science 324 1530
[3] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[4] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[5] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. U.S.A. 102 10451
[6] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K 2007 Science 315 1379
[7] Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151
[8] Timko B P, Cohen-Karni T, Yu G H, Qing Q, Tian B Z and Lieber C M 2009 Nano Lett. 9 914
[9] Chen F, Xia J L and Tao N J 2009 Nano Lett. 9 1621
[10] Liu G., Stillman W, Rumyantsev S, Shao Q, Shur M and Balandin A A 2009 Appl. Phys. Lett. 95 033103
[11] Sun J T, Du S X, Xiao W D, Hu H, Zhang Y Y, Li G and Gao H J 2009 Chin. Phys. B 18 3008
[12] Lin Y M and Avouris P 2008 Nano Lett. 8 2119
[13] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
[14] Du X, Skachko I, Barker A and Andrei E Y 2008 Nat. Nanotechnol. 3 491
[15] Muriale L, Lee E, Genovese J and Trend S 1996 Ann. Occup. Hyg. 40 705
[16] Blake P, Hill E W, Neto A C, Novoselov K S, Jiang D, Yang R, Booth T J and Geim A K 2007 Appl. Phys. Lett. 91 063124
[17] Li Q, Li Z J, Chen M R and Fang Y 2009 Nano Lett. 9 2129
[18] Li Z J, Cheng Z G., Wang R, Li Q and Fang Y 2009 Nano Lett. 9 3599
[19] Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C and Sood A K 2008 Nat. Nanotechnol. 3 210
[20] Gupta A, Russin T J, Gutierrez H R and Eklund P C 2009 Acs. Nano 3 45
[21] Mitchell F H 1992 Introduction to Electronics Design 2nd ed (Upper Saddle River: Prentice-Hall, Inc)
[22] Neamen D A 1997 Semiconductor Physics and Devices: Basic Principles 2nd ed (Irwin: McGraw-Hill Comp. Inc)
[23] Bao W Z, Liu G, Zhao Z, Zhang H, Yan D and Lau C N 2010 Nano Res. 3 98 endfootnotesize
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Laboratory demonstration of geopotential measurement using transportable optical clocks
Dao-Xin Liu(刘道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凯枫), Yi Yuan(袁易),Ping Zhang(张平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2023, 32(1): 010601.
[6] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Weak localization in disordered spin-1 chiral fermions
Shaopeng Miao(苗少鹏), Daifeng Tu(涂岱峰), and Jianhui Zhou(周建辉). Chin. Phys. B, 2023, 32(1): 017502.
[9] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[10] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[11] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[12] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[13] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[14] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[15] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
No Suggested Reading articles found!