Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 090319    DOI: 10.1088/1674-1056/19/9/090319
GENERAL Prev   Next  

Thermal entanglement in two-qutrit spin-1 anisotropic Heisenberg model with inhomogeneous magnetic field

Erhan Albayrak
Erciyes University, Department of Physics, 38039 Kayseri, Turkey
Abstract  The thermal entanglement of a two-qutrit spin-1 anisotropic Heisenberg XXZ chain in an inhomogeneous magnetic field is studied in detail. The effects of the external magnetic field (B), a parameter b which controls the inhomogeneity of B, and the bilinear interaction parameters Jx=Jy≠Jz on the thermal variation of the negativity are studied in detail. It is found that negativity N decreases when the values of magnetic field, inhomogeneity b and temperature are increasing. In addition, N remains at higher temperatures for higher values of Jz and lower values of B and b.
Keywords:  negativity      XXZ model      thermal entanglement      qutrit      spin-1      magnetic field  
Received:  18 February 2010      Revised:  13 April 2010      Accepted manuscript online: 
PACS:  0367  
  7540F  

Cite this article: 

Erhan Albayrak Thermal entanglement in two-qutrit spin-1 anisotropic Heisenberg model with inhomogeneous magnetic field 2010 Chin. Phys. B 19 090319

[1] O'Connor K M and Wootters W K 2001 Phys. Rev. A 63 052302
[2] Arnesen M O, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
[3] Gunlycke D, Kendon V M, Vedral V and Bose S 2001 Phys. Rev. A 64 042302
[4] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[5] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
[6] Wang X 2004 Phys. Lett. A 331 164
[7] Jonathan D and Plenio M B 1999 Phys. Rev. Lett. 83 3566
[8] Khveshchenko D V 2003 Phys. Rev. B 68 193307
[9] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[10] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[11] Li D C, Wang X P and Cao Z L 2008 J. Phys.: Condens. Matter 20 325229
[12] Kamta G L and Starace A F 2002 Phys. Rev. Lett. 88 107901
[13] Kamta G L, Istomin A Y and Starace A F 2007 Eur. Phys. J. D 44 389
[14] Sun Y, Chen Y and Chen H 2003 Phys. Rev. A 68 044301
[15] Zhang R and Zhu S 2006 Phys. Lett. A 348 110
[16] Wang X 2001 Phys. Rev. A 64 012313
[17] Yeo Y 2002 Phys. Rev. A 66 062312
[18] Zhang Y, Long G L, Wu Y C and Guo G C Commun. Theor. Phys. 47 787
[19] Zhou L, Song H S, Guo Y Q and Li C 2003 Phys. Rev. A 68 024301
[20] Li D C and Cao Z L 2009 Chin. Phys. Lett. 26 020309
[21] Zhao X Y and Zhou L 2007 Int. J. Theor. Phys. 46 2437
[22] Wang X, Fu H and Solomon A I 2001 J. Phys. A: Math. Gen. 34 11307
[23] Santos L F 2003 Phys. Rev. A 67 062306
[24] Wang X 2001 Phys. Lett. A 281 101
[25] Gu S J, Lin H Q and Li Y Q 2003 Phys. Rev. A 68 042330
[26] Zhang G F 2007 Phys. Rev. A 75 034304
[27] Zhu Y, Zhu S Q and Hao X 2007 Chin. Phys. 16 2229
[28] Zhang G F, Li S S and Liang J Q 2005 Opt. Commun. 245 457
[29] Wang X, Li H B, Sun Z and Li Y Q 2005 J. Phys. A: Math. Gen. 38 8703
[30] Wang X and Gu S J 2007 J. Phys. A: Math. Theor. 40 10759
[31] Zhang G F, Liang J Q, Zhang G E and Yan Q W 2005 Eur. Phys. J. D 32 409
[32] Wang X and Wang Z D 2006 Phys. Rev. A 73 064302
[33] Huang H, Wang X, Sun Z and Yang G 2008 Physica A 387 2736
[34] Zhu G Q and Wang X G 2997 Commun. Theor. Phys. 49 343
[35] Yang Z and Ning W Q 2008 Chin. Phys. Lett. 25 31
[36] He M M, Xu C T and Liang J Q 2006 Phys. Lett. A 358 381
[37] Ha K C, Kye S H and Park Y S 2003 Phys. Lett. A 313 163
[38] Asoudeh M and Karimipour V 2005 Phys. Rev. A 71 022308
[39] Zhang G F and Li S S 2005 Phys. Rev. A 72 034302
[40] Albayrak E 2009 Eur. Phys. B 72 491
[41] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314 endfootnotesize
[1] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[2] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[3] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[4] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[5] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[6] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[7] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[8] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[9] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[10] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[11] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[12] Protection of entanglement between two V-atoms in a multi-cavity coupling system
Wen-Jin Huang(黄文进), Mao-Fa Fang(方卯发), and Xiong Xu(许雄). Chin. Phys. B, 2022, 31(1): 010301.
[13] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[14] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[15] Quasi-delta negative ions density of Ar/O2 inductively coupled plasma at very low electronegativity
Shu-Xia Zhao(赵书霞). Chin. Phys. B, 2021, 30(5): 055201.
No Suggested Reading articles found!