Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 090318    DOI: 10.1088/1674-1056/19/9/090318
GENERAL Prev   Next  

Protecting entanglement by detuning: in Markovian environments vs in non-Markovian environments

Huang Li-Yuan(黄利元)a) and Fang Mao-Fa(方卯发)b)
a Department of Electronic and Communication Engineering, Changsha University, Changsha 410081, China; b College of Physics and Information Science, Hunan Normal University, Changsha 410081, China
Abstract  The models of two qubits separately trapped in two independent Markovian or non-Markovian environments have been investigated. The distinction of the two-qubit entanglement dynamics in different environments has also been discussed in detail. The results show that, in non-Markovian environments, the possible usage time of entanglement can be extended due to its memory effect. On the other hand, we note that, compared to Markovian environments, the two-qubit entanglement could be protected better in non-Markovian environments by modulating the detuning between qubits and cavities. Finally, an intuitive physical interpretation for these results is given.
Keywords:  protecting entanglement      Markovian environment      non-Markovian environment  
Received:  25 December 2009      Revised:  27 February 2010      Accepted manuscript online: 
PACS:  0367  
  4250  

Cite this article: 

Huang Li-Yuan(黄利元) and Fang Mao-Fa(方卯发) Protecting entanglement by detuning: in Markovian environments vs in non-Markovian environments 2010 Chin. Phys. B 19 090318

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press).
[2] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[3] Yu T and Eberly J H 2006 Opt. Commun. 264 393
[4] Yu T and Eberly J H 2009 Science 323 598
[5] Chen L, Shao X Q and Zhang S 2009 Chin. Phys. B 18 4676
[6] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Souto Ribeiro P H and Davidovich L 2007 Science 316 579
[7] Laurat J, Choi K S, Deng H, Chou C W and Kimble H J 2007 Phys. Rev. Lett. 99 180504
[8] Bellomo B, Lo Franco R and Compagno G 2007 Phys. Rev. Lett. 99 160502
[9] Bellomo B, Lo Franco R and Compagno G 2008 Phys. Rev. A 77 032342
[10] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[11] Zheng S B 2006 Phys. Rev. A 74 054303
[12] Pan G Z, Yang M and Cao Z L 2009 Chin. Phys. B 18 2319
[13] Lockhart R B and Steiner M J 2002 Phys. Rev. A 65 022107
[14] Paternostro M, Tame M S, Palma G M and Kim M S 2006 Phys. Rev. A 74 052317
[15] Rey A M, Jiang L, Fleischhauer M, Demler E and Lukin M D 2008 Phys. Rev. A 77 052305
[16] Oliveira J G, Rossi R and Nemes M C 2008 Phys. Rev. A 78 044301
[17] Mundarain D and Orszag M 2009 Phys. Rev. A 79 052333
[18] Bellomo B, Lo Franco R, Maniscalco S and Compagno G 2008 Phys. Rev. A 78 060302(R)
[19] Maniscalco S, Francica F, Zaffino R L, Lo Gullo N and Plastina F 2008 Phys. Rev. Lett. 100 090503
[20] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[21] Spohn H 1980 Rev. Mod. Phys. 52 569
[22] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[23] Santos M F, Milman P, Davidovich L and Zagury N 2006 Phys. Rev. A 73 040305(R)
[24] Scala M, Militello B, Messina A, Maniscalco S, Piilo J and Suominen K A 2008 Phys. Rev. A 77 043827
[25] Garraway B M 1997 Phys. Rev. A 55 2290
[26] Li Y, Zhou J and Guo H 2009 Phys. Rev. A 79 012309
[27] de Vega I, Alonso D and Gaspard P 2005 Phys. Rev. A 71 023812
[1] Discord and entanglement in non-Markovian environments at finite temperatures
Hong-Mei Zou(邹红梅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(9): 090302.
[2] Population dynamics of excited atoms in non-Markovian environments at zero and finite temperature
Zou Hong-Mei (邹红梅), Fang Mao-Fa (方卯发). Chin. Phys. B, 2015, 24(8): 080304.
[3] Rise of quantum correlations in non-Markovian environments in continuous-variable systems
Liu Xin (刘辛), Wu Wei (吴薇). Chin. Phys. B, 2014, 23(7): 070303.
[4] High entanglement generation and high fidelity quantum state transfer in a non-Markovian environment
Li Yan-Ling(李艳玲) and Fang Mao-Fa(方卯发) . Chin. Phys. B, 2011, 20(10): 100312.
No Suggested Reading articles found!