Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 067201    DOI: 10.1088/1674-1056/19/6/067201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of line defects on focusing in a two-dimensional photonic-crystal flat lens

Feng Zhi-Fang(冯志芳)
Beijing University of Chemical Technology, Beijing 100029, China
Abstract  We investigate in detail the influence of line defects on focusing of electromagnetic waves in a two-dimensional photonic-crystal flat lens. Through simulations, we find that a focusing can always be observed when a line defect in the lens is introduced along the light transmission direction and the width of the line defect is less than $\lambda$/2. However, there appear two focusings when the width of the line defect is more than $\lambda$/2. When the line defect is introduced along the direction perpendicular to the transmission, there is always one focusing.
Keywords:  flat lens      line defect      photonic crysta  
Received:  04 May 2009      Accepted manuscript online: 
PACS:  42.79.Bh (Lenses, prisms and mirrors)  
  42.70.Qs (Photonic bandgap materials)  
  02.70.Bf (Finite-difference methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10704006).

Cite this article: 

Feng Zhi-Fang(冯志芳) Influence of line defects on focusing in a two-dimensional photonic-crystal flat lens 2010 Chin. Phys. B 19 067201

[1] Veselago V G 1968 Sov. Phys. Usp . 10 509
[2] Smith D R, Padilla W J, View D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett . 84 4184
[3] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[4] Foteinopoulou S, Economou E N and Soukoulis C M 2003 Phys. Rev. Lett . 9 107402
[5] HouckA A, Brock J B and Chuang I L 2003 Phys. Rev. Lett . 90 137401
[6] Read E J, Soljacic M and Joannopoulos J D 2003 Phys. Rev. Lett . 91 133901
[7] Luo C, Ibanescu M, Johnson S G and Joannopoulos J D 2003 Science 299 368
[8] Pendry J B 2000 Phys. Rev. Lett . 85 3966
[9] Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Phys. Rev. Lett . 76 4773
[10] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microwave Theory Tech . 47 2075
[11] Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T and Kawakami S 1998 Phys. Rev . B 58 R10096
[12] Notomi M 2000 Phys. Rev . B 62 10696
[13] Luo C, Johnson S G, Joannopoulos J D and Pendry J B 2002 Phys. Rev . B 65 201104
[14] Cubukcu E, Aydin K, Ozbay E, Foteinopoulou S and Soukoulis C M 2003 Nature (London) 423 604
[15] Foteinopoulou S and Soukoulis C M 2003 Phys. Rev . B 67 235107
[16] Zhang X D and Li L M 2005 Appl. Phys. Lett . 86 121103
[17] Zhang X D 2004 Phys. Rev . B 70 195110
[18] Zhang X D and Liu Z Y 2004 Appl. Phys. Lett . 85 341
[19] Xiao S S, Qiu M, Ruan Z C and He S L 2004 Appl. Phys. Lett . 85 4269
[20] Luo C, Johnson S G, Joannopoulos J D and Pendry J B 2003 Phys. Rev . B 68 045115
[21] Wang X, Ren Z F and Kempa K 2005 Appl. Phys. Lett . 86 061105
[22] Gralak B, Enoch S and Tayeb G 2000 J. Opt. Soc. Am . A 17 1012
[23] Parimi P V, Lu W T, Vodo P, Sokoloff J, Derov J S and Sridhar S 2004 Phys. Rev. Lett . 92 127401
[24] Moussa R, Foteinopoulou S, Zhang L, Tuttle G, Guven K, Ozbay E and Soukoulis C M 2005 Phys. Rev. Lett . 71 085106
[25] Parimi P V, Lu W T, Vodo P and Sridhar S 2003 Nature (London) 426 404
[26] Cubukcu E, Aydin K, Ozbay E, Foteinopoulou S and Soukoulis C M 2003 Phys. Rev. Lett . 91 207401
[27] Zhang X 2004 Phys. Rev . B 70 205102
[28] Luo C, Johnson S G, Joannopoulos J D and Pendry J B 2003 Phys. Rev . B 68 045115
[29] Li Z Y and Lin L L 2003 Phys. Rev . B 68 245110
[30] Feng Z F, Feng S, Li Z Y, Cheng B Y and Zhang D Z 2006 J. Appl. Phys . 100 053702
[31] Fabre Z, Melique X, Lippens D and Vanbesien O 2008 Opt. Commun . 281 3571
[32] Zheng Q, Zhao X P, Li M M and Zhao J 2006 Acta Phys. Sin . 55 6441 (in Chinese)
[33] Hu X Y, Cheng X and Gong Q H 2009 Phys. Lett . A 2009 doi:10.1016/j.physleta.2009.{02 .047
[34] Feng Z F, Zhang X D, Feng S, Ren K, Li Z Y, Cheng B Y and Zhang 2006 J. Opt . A: Pure Appl. Opt . 9 101
[35] Feng Z F, Wang X G, Li Z Y and Zhang D Z 2008 Chin. Phys . B 17 1101
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[4] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[5] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[6] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[7] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[8] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[9] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[10] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[11] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[12] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[13] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[14] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[15] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
No Suggested Reading articles found!