Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 047101    DOI: 10.1088/1674-1056/19/4/047101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles investigation of N-Ag co-doping effect on electronic properties in p-type ZnO

Zuo Chun-Ying(左春英)a), Wen Jing(温静) a), and Bai Yue-Lei(柏跃磊)b)
a Arts and Science Department of Heilongjiang August First Land Reclamation University, Daqing 163319, China; b Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
Abstract  The geometric structure, band structure and density of states of pure, Ag-doped, N-doped, and N--Ag codoped wurtzite ZnO have been investigated by the first-principles ultra-soft pseudopotential method based on the density functional theory. The calculated results show that the carrier concentration is increased in the ZnO crystal codoped by N and Ag, and the codoped structure is stable and is more in favour of the formation of p-type ZnO.
Keywords:  first-principles      co-doping      ZnO      electronic properties  
Received:  03 July 2009      Revised:  03 November 2009      Accepted manuscript online: 
PACS:  71.20.Nr (Semiconductor compounds)  
  61.72.uj (III-V and II-VI semiconductors)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Dx (Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))  
  61.66.Fn (Inorganic compounds)  
  72.80.Ey (III-V and II-VI semiconductors)  

Cite this article: 

Zuo Chun-Ying(左春英), Wen Jing(温静), and Bai Yue-Lei(柏跃磊) First-principles investigation of N-Ag co-doping effect on electronic properties in p-type ZnO 2010 Chin. Phys. B 19 047101

[1] Zhang X D, Guo M L, Liu C L, Zhang L A, Zhang W Y, Ding Y Q, Wu Q and Feng X 2008 Physical Journal B 62 417
[2] Shen Y B, Zhou X, Xu M, Ding Y C, Duan M Y, LingHu R F and Zhu W J 2007 Acta Phys. Sin. 56 3440 (in Chinese)
[3] Yang Y T, Wu J, Cai Y R, Ding R X, Song J X and Shi L C 2008 Acta Phys. Sin. 57 7151 (in Chinese)
[4] Alivov Y I, Look D C, Ataev B M, Chukichev M V, Mamedov V V, Agafonov Y A and Pustovit A N 2004 Solid State Electron. 48 2343
[5] Makino T, Chia C H, Tuan N T and Segawa Y 2000 Appl. Phys. Lett. 77 1632
[6] Look D C 2001 Mater. Sci. Eng.} B 80 383
[7] Zhang F Y, You J Q, Zeng Z and Zhong G H 2007 Chin. Phys. 16 3815
[8] Zhang F C, Zhang Z Y, Zhang W H, Yan J F and Yong J N 2009 Chin. Phys. B 18] 2508
[9] Gupta A, Verma N K and Bhatti H S 2007 J. Low Temp. Phys. 14 749
[10] Yoshino K, Hata T, Kakeno T, Komaki H, Yoneta M, Akaki Y and Ikari T 2003 Phys. Stat. Sol}. (c) 0 626
[11] ?zgür ü, Alivov Y I, Liu C, Teke A, Reshchikov M A and Morkoc H 2005 J. Appl. Phys. 98 041301
[12] Look D C, Claflin B and Alivov Y I 2004 Phys. Status Solidi 201 2203
[13] Look D C and Claflin B 2004 Phys. Status Solidi 241 624
[14] Zhang J K, Deng S H and Jin H 2007 Acta Phys. Sin. 56 537 (in Chinese)
[15] Wang J W, Bian J M, Sun J C, Liang H W, Zhao J Z and Du G T 2008 Acta Phys. Sin}. 57] 5212 (in Chinese)
[16] Ryu Y R, Zhu S and Look D C 2000 Crystal Growth 216 330
[17] Hwang D K, Oh M S, Lim J H, Kang C G and Park S J 2007 Appl. Phys. Lett. 90] 021106
[18] Tu M L, Su Y K and Ma C Y 2006 J. Appl. Phys. 100 053705
[19] Wang X, Lu Y M, Shen D Z, Zhang Z Z, Li B H, Yao B, Zhang J Y, Zhao D X and F X W 2006 Chin. J. Lumin. 27 426 ( in Chinese)
[20] Zhang X, Li X M, Chen T L, Yu W D, Gao X D, Zhang C Y and Zhao J L 2006 Chin. J. Lumin. 26 503 ( in Chinese)
[21] Wang X H, Yao B and Shen D Z 2006 Chin J. Lumin. 27 946 (in Chinese)
[22] Zeng Y J, Ye Z Z, Xu W Z, Li D Y, Lu J G, Zhu L P and Zhao B H 2006 Appl. Phys. Lett. 88 062107
[23] Wan Q X, Xiong Z H and Dai J N 2008 Opt. Mater. 30 821
[24] Wang J W, Bian J M and Liang H W 2008 Chin. Phys. Lett. 25 3400
[25] Segall M D, Lindan P J D, Probert M J, Pickard C J and Hasnip P J 2002 J. Phys.: Condens. Matter. 14 2717
[26] Payne M C, Teter M P, Allan D C, Arias T A and Jornnopoulos J D 1992 Rev. Mod. Phys. 64 1045
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Vanderbilt D 1990 Phys. Rev. B 41 7892
[29] Chen K, Fan G H and Zhang Y 2008 Acta Phys. Chim. Sin. 24 63 (in Chinese)
[30] Chen L L, Lu J G and Ye Z Z 2005 Appl. Phys. Lett. 87 252106
[31] Zhang X D, Guo M L and Liu C L 2008 Phys. J. B 62 418
[32] Sun J, Wang H T and He J 2005 Phys. Rev. B 71 125132
[33] Yamamoto T 2002 Thin Solid Films. 420--421 101
[34] Schleife A, Fuchs F, Furthmuller J and Bechstedt F 2006 Phys. Rev. B 73 245212
[35] Janotti A, Segev D and Van de Walle C G 2006 Phys. Rev. B 74 045202
[36] Chen K, Fan G H and Zhang Y 2008 Acta Phys. Sin. 57 1056 (in Chinese)
[37] Yan Y F, Al-Jassim M M and Wei S H 2006 Appl. Phys. Lett. 89 181912
[38] Harish K Y, Sreenivas K and Vinay G J 2006 Appl. Phys. 99 83507
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[11] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[12] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[13] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[14] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[15] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
No Suggested Reading articles found!