Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 046101    DOI: 10.1088/1674-1056/19/4/046101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Elastic analysis of an elliptic notch in quasicrystals of point group 10 subjected to shear loading

Li Lian-He(李联和)
College of Mathematics Science, Inner Mongolia Normal University, Huhhot 010022, China
Abstract  Based on the stress potential and complex variable function method, this paper makes an elastic analysis of an elliptic notch subjected to uniform shear stress at infinity in quasicrystals with point group 10. With the aid of conformal transformation, an exact solution for the elliptic notch of the quasicrystals is obtained. The solution of the mode II Griffith crack as a special case is constructed. The stress intensity factor and energy release rate have been also obtained as a direct result of the crack solution.
Keywords:  quasicrystals      plane elasticity      elliptic notch      stress potential  
Received:  14 April 2009      Revised:  09 July 2009      Accepted manuscript online: 
PACS:  62.20.D- (Elasticity)  
  61.44.Br (Quasicrystals)  
  62.20.M- (Structural failure of materials)  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
  81.40.Np (Fatigue, corrosion fatigue, embrittlement, cracking, fracture, and failure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10761005), by the Natural Science Foundation of Inner Mongolia of China (Grant Nos.~2009MS0102, 2009BS0101 and 2009BS0104), the Natural Science Foundation of Inner Mongolia N

Cite this article: 

Li Lian-He(李联和) Elastic analysis of an elliptic notch in quasicrystals of point group 10 subjected to shear loading 2010 Chin. Phys. B 19 046101

[1] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Rev. Lett. 53 1951
[1a] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Rev. Lett. 53 1951
[2] Bak P 1985 Phys. Rev. B 32 5764
[3] Levine D and Steinhardt P J 1984 Phys. Rev. Lett. 53 2477
[4] Hu C Z, Wang R H and Ding D H 2000 Rep. Prog. Phys. 63 1
[5] Hu C Z, Wang R H, Yang W G and Ding D H 1996 Acta Cryst. A 52 251
[6] Fan T Y and Mai Y W 2004 Appl. Mech. Rev. 57 325
[7] Li X F and Fan T Y 1998 Chin. Phys. Lett. 15 278
[8] Gao Y, Xu S P and Zhao B S 2007 Pramana J. Phys. 68 803
[9] De P and Pelcovits A 1987 Phys. Rev. B 35 8609
[10] Ding D H, Wang R H, Yang W G and Hu C Z 1995 J. Phys.: Condens. Matter 7 5423
[11] Peng Y Z and Fan T Y 2000 Chin. Phys. 9 764
[12 Ricker M, Bachteler J and Trebin H R 2001 Eur. Phys. J. B 23 351
[13] Fan T Y 1999 The Mathematical Theory of Elasticity of Quasi-crystals and Applications (Beijing: Beijing Institute of Technology Press) (in Chinese)
[14] Liu G T, Fan T Y and Guo R P 2004 Int. J. Solids and Structures 41 3949
[15] Li L H and Fan T Y 2006 J. Phys.: Condens. Matter 18 10631
[16] Shibuya T, Hashimoto T and Takeuchi S 1990 Jpn. J. Appl. Phys. 29 L349
[17] Tei--Ohkawa T, Edagawa K and Takeuchi S 1995 J. Non. Cryst. Solids 189 25
[18] Fan T Y, Trebin H R, Messerschmidt U and Mai Y W 2004 J. Phys.: Condens. Matter] 16 5229
[19] Feuerbacher M, Metzmacher C, Wollgarten M, Urban K, Baufeld B, Bartsch M and Messerschmidt U 1997 Mater. Sci. Engin. A 233 103
[20] Muskhelishvili N I 1963 Some Basic Problems of the Mathematical Theory of Elasticity (Noordhoff: Groningen)
[21] Li X F and Fan T Y 2002 Chin. Phys. 11 266
[1] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
[2] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[3] Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals
Dongsheng Yang(杨东升) and Guanting Liu(刘官厅)†. Chin. Phys. B, 2020, 29(10): 104601.
[4] Interaction between infinitely many dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal
Guan-Ting Liu(刘官厅), Li-Ying Yang(杨丽英). Chin. Phys. B, 2017, 26(9): 094601.
[5] The interaction between a screw dislocation and a wedge-shaped crack in one-dimensional hexagonal piezoelectric quasicrystals
Li-Juan Jiang(姜丽娟), Guan-Ting Liu(刘官厅). Chin. Phys. B, 2017, 26(4): 044601.
[6] Icosahedral quasicrystals solids with an elliptic hole under uniform heat flow
Li Lian-He (李联和), Liu Guan-Ting (刘官厅). Chin. Phys. B, 2014, 23(5): 056101.
[7] Finite size specimens with cracks of icosahedral Al–Pd–Mn quasicrystals
Yang Lian-Zhi (杨连枝), Ricoeur Andreas, He Fan-Min (何蕃民), Gao Yang (高阳). Chin. Phys. B, 2014, 23(5): 056102.
[8] A Dugdale–Barenblatt model for a strip with a semi-infinite crack embedded in decagonal quasicrystals
Li Wu (李梧), Xie Ling-Yun (解凌云). Chin. Phys. B, 2013, 22(3): 036201.
[9] Generalized 2D problem of icosahedral quasicrystals containing an elliptic hole
Li Lian-He (李联和). Chin. Phys. B, 2013, 22(11): 116101.
[10] Elliptic hole in octagonal quasicrystals
Li Lian-He (李联和). Chin. Phys. B, 2013, 22(1): 016102.
[11] Electronic and optical properties of CdS/CdZnS nanocrystals
A. John Peter, Chang Woo Lee. Chin. Phys. B, 2012, 21(8): 087302.
[12] The relation between the generalised Eshelby integral and the generalised BCS and DB modelsvspace1mm
Fan Tian-You (范天佑) and Fan Lei(范蕾). Chin. Phys. B, 2011, 20(3): 036102.
[13] Dynamic behaviour of the icosahedral Al--Pd--Mn quasicrystal with a Griffith crack
Wang Xiao-Fang(王晓芳), Fan Tian-You(范天佑), and Zhu Ai-Yu(祝爱玉). Chin. Phys. B, 2009, 18(2): 709-714.
[14] Group-theoretical method for physical property tensors of quasicrystals
Gong Ping(龚平), Hu Cheng-Zheng(胡承正), Zhou Xiang(周详), Wang Ai-Jun(王爱军), and Miao Ling(缪灵). Chin. Phys. B, 2006, 15(9): 2065-2079.
[15] PLANE ELASTICITY PROBLEM OF TWO-DIMENSIONAL OCTAGONAL QUASICRYSTALS AND CRACK PROBLEM
Zhou Wang-min (周旺民), Fan Tian-you (范天佑). Chin. Phys. B, 2001, 10(8): 743-747.
No Suggested Reading articles found!