Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 038701    DOI: 10.1088/1674-1056/19/3/038701
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Opinion evolution based on cellular automata rules in small world networks

Shi Xiao-Ming(石晓明)a), Shi Lun(施伦)b), and Zhang Jie-Fang(张解放)a)
a Institute of Nonlinear Physics, Zhejiang Normal University, Jinhua 321004, China; b Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
Abstract  In this paper, we apply cellular automata rules, which can be given by a truth table, to human memory. We design each memory as a tracking survey mode that keeps the most recent three opinions. Each cellular automata rule, as a personal mechanism, gives the final ruling in one time period based on the data stored in one's memory. The key focus of the paper is to research the evolution of people's attitudes to the same question. Based on a great deal of empirical observations from computer simulations, all the rules can be classified into 20 groups. We highlight the fact that the phenomenon shown by some rules belonging to the same group will be altered within several steps by other rules in different groups. It is truly amazing that, compared with the last hundreds of presidential voting in America, the eras of important events in America's history coincide with the simulation results obtained by our model.
Keywords:  cellular automata rules      truth table      memory      simulation  
Received:  27 March 2009      Revised:  23 August 2009      Accepted manuscript online: 
PACS:  87.18.Sn (Neural networks and synaptic communication)  
  87.10.-e (General theory and mathematical aspects)  

Cite this article: 

Shi Xiao-Ming(石晓明), Shi Lun(施伦), and Zhang Jie-Fang(张解放) Opinion evolution based on cellular automata rules in small world networks 2010 Chin. Phys. B 19 038701

[1] Adamatzky A, Wuensche A amd De Lacy Costello B 2005 Chaos, Solitons andFractals 27 287
[2] Adamatzky A, Juiá rez Martínez G and Mora J C S T 2006 Int. J.Bifurcat. Chaos 16 1
[3] Chidyagwai P and Reiter C A 2005 Chaos, Solitons and Fractals 24 803
[4] Alonso-Sanz R and Martin M 2004 Chaos, Solitons and Fractals 21 809
[5] Alonso-Sanz R and Martin M 2002 Int. J.Bifurcat. Chaos 12 205
[6] Adamatzky A 2001 Appl. Math. Compu. 122 195
[7] Adamatzky A 2003 Appl. Math. Compu. 146 579
[8] Shen B and Gao Z Y 2008 Chin. Phys. B 17 3284
[9] Zheng Z Z and Wang A L 2009 Chin. Phys. B 18 489
[10] Hedlund G A 1969 Theory of Computing Systems 3 320
[11] Wolfram S 2002 A New Kind of Science (Champaign.Illinois. USA: Wolfram Media., Inc.)
[12] Chua L O, Yoon S and Dogaru R 2002 Int. J. Bifurcat.Chaos 12 2655
[13] Chua L O, Sbitnev V I and Yoon S 2003 Int. J. Bifurcat.Chaos 13 2377
[14] Chua L O, Sbitnev V I and Yoon S 2004 Int. J. Bifurcat.Chaos 14 3689
[15] Chua L O, Sbitnev V I and Yoon S 2005 Int. J. Bifurcat.Chaos 15 1045
[16] Chua L O, Sbitnev V I and Yoon S 2006 Int. J. Bifurcat.Chaos 16 1097
[17] Chua L O, Guan J, Sbitnev V I and Jinwook S 2007 Int. J. Bifurcat.Chaos 17 2839
[18] Burks A W (ed.) 1970 Essays on Cellular Automata (Urbana, Illinois: University of Illinois Press)
[19] Hennie F C 1961 Iterative Arrays of Logical Circuits (New York: M. I. T. Press and John Wiley Sons)
[20] Jen E 1986 J. Stat. Phys. 43 219
[21] Hanson J E and Crutchfield J P 1997 Physica D 103 169
[22] Wolfram S 1983 Rev. Mod. Phys. 55 601
[23] Sznajd-Weron K 2005 Acta Phys. Polonica B 36 2537
[24] Watts D J and Strogatz S H 1998 Nature 393 440
[25] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[26] Sznajd-Weron K and Sznajd J 2000 Int. J. Mod. Phys. C 11 1157
[27] Sznajd-Weron K and Sznajd J 2003 Physica A 324 437
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[4] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[5] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[6] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[7] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[8] Direct measurement of an energy-dependent single-event-upset cross-section with time-of-flight method at CSNS
Biao Pei(裴标), Zhixin Tan(谭志新), Yongning He(贺永宁), Xiaolong Zhao(赵小龙), and Ruirui Fan(樊瑞睿). Chin. Phys. B, 2023, 32(2): 020705.
[9] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[10] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[11] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[12] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[13] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[14] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[15] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
No Suggested Reading articles found!