Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 126101    DOI: 10.1088/1674-1056/19/12/126101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Preferred clusters in metallic glasses

Yang Liang(杨亮) and Guo Gu-Qing(郭古青)
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract  In this work, we present a feasible scheme based on framework of the sophisticated Voronoi tessellation method in order to evaluate what clusters should be preferred for building blocks in any given metallic glass, by analysing the fivefold-symmetry axes as well as the degree of structural regularity in various clusters. This scheme is well proved by a group of experiments and calculations, which may have broad implications for exploration of obtaining explicit and proper structural pictures, and understanding the structural origin of the unique properties and glass forming ability in these novel amorphous alloys.
Keywords:  metallic glass      synchrotron radiation techniques      atomic structure      reverse Monte Carlo simulation  
Received:  21 June 2010      Revised:  27 July 2010      Accepted manuscript online: 
PACS:  61.43.Fs (Glasses)  
  64.70.P- (Glass transitions of specific systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10805027), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2008397), and the Nanjing University of Aeronautics and Astronautics Research Funding, China (Grant No. NS2010168).

Cite this article: 

Yang Liang(杨亮) and Guo Gu-Qing(郭古青) Preferred clusters in metallic glasses 2010 Chin. Phys. B 19 126101

[1] Fenney J L 1977 Nature (London) 266 309
[2] Miracle D B 2006 Acta Mater. 54 4317
[3] Sheng H W, Luo W K, Alamgir F M, Bai J M and Ma E 2006 Nature (London) 439 419
[4] Ma D, Stoica A D, Yang L, Wang X L, Lu Z P, Neuefeind J, Kramer M J, Richardson J W and Proffen T 2007 Appl. Phys. Lett. 90 211908
[5] Wang X D, Yin S, Cao Q P, Jiang J Z, Franz H and Jin Z H 2008 Appl. Phys. Lett. 92 011902
[6] Zhang J X, Li H, Zhang J, Song X G and Bian X F 2009 Chin. Phys. B 18 4949
[7] Du X H and Huang J C 2008 Chin. Phys. B 17 249
[8] Wang G H, Pan H, Ke F J, Xia M F and Bai Y L 2008 Chin. Phys. B 17 259
[9] Saida J, Matsushita M and Inoue A 2001 Appl. Phys. Lett. 79 412
[10] Saksl K, Franz H, Jóvári P, Klementev K, Welter E, Ehnes A, Saida J, Inoue A and Jiang J Z 2003 Appl. Phys. Lett. 83 3924
[11] Luo W K, Sheng H W, Alamgir F M, Bai J M, He J H and Ma E 2004 Phys. Rev. Lett. 92 145502
[12] Wang S Y, Kramer M J, Xu M, Wu S, Hao S G, Sordelet D J, Ho K M and Wang C Z 2009 Phys. Rev. B 79 144205
[13] http://www.ccl.net/cca/software/SOURCES/FORTRAN /allen-tildesley-book/f.35. shtml
[14] Medvedev N N 1986 J. Comput. Phys. 67 223
[15] Schwarzenbach D 1996 Crystallography (New Youk: John Wiley & Sons)
[16] Hammersley A P, Svensson S O, Hanfland M, Fitch A N and Häusermann D 1996 High Pressure Res. 14 235
[17] Felderhoff M, Klementiev K, Grunert W, Spliethoff B, Tesche B, Bellosta Von Colbe J M, Bogdanovic B, Hartel M, Pommerin A, Schuth F and Weidenthaler C 2004 Phys. Chem. Chem. Phys. 6 4369
[18] Fukunaga T, Itoh K, Otomo T, Mori K, Sugiyama M, Kato H, Hasegawa M, Hirata A, Hirotsu Y and Aoki K 2006 Physica B 385–386 259
[19] Fujita T, Konno K, Zhang W, Kumar V, Matsuura M, Inoue A, Sakurai T and Chen M W 2009 Phys. Rev. Lett. 103 075502
[20] Wakeda M, Shibutani Y, Ogata S and Park J 2007 Intermetall. 15 139
[21] Li M Z, Wang C Z, Hao S G, Kramer M J and Ho K M 2009 Phys. Rev. B 80 184201
[22] Yang L, Yin S, Wang X D, Cao Q P, Jiang J Z, Saksl K and Franz H 2007 J. Appl. Phys. 102 083512
[23] Fukunaga T, Itoh K, Otomo T, Mori K, Sugiyama M, Kato H, Hasegawa M, Hirata A, Hirotsu Y and Hannon A C 2006 Intermetall. 14 893
[24] Delogu F 2009 Intermetall. 17 688
[25] Itoh K, Watanabe T, Otomo T, Sugiyama M, Mori K and Fukunaga T 2009 J. Alloys Compd. 483 213
[26] Saida J, Itoh K, Sato S, Imafuku M, Sanada T and Inoue A 2009 J. Phys.: Condens. Matter 21 375104
[27] Wang S Y, Wang C Z, Li M Z, Huang L, Ott R T, Kramer M J, Sordelet D J and Ho K M 2008 Phys. Rev. B 78 184204
[28] Tagaki T, Ohkubo T, Hirotsu Y, Murty B S, Hono K and Shindo D 2001 Appl. Phys. Lett. 79 485
[29] Itoh K, Otomo T, Sugiyama M, Mori K and Fukunaga T 2009 J. Phys.: Condens. Series 144 012107
[30] Hirata A, Hirotsu Y, Ohkubo T, Tanaka N and Nieh T G 2006 Intermetall. 14 903
[31] Della Valle R G, Gazzillo D, Frattini R and Pastore G 1994 Phys. Rev. B 49 12625
[32] Hirata A, Hirotsu Y, Ohkubo T, Hanada T and Bengus V Z 2006 Phys. Rev. B 74 214206
[33] Bondarev A V, Bataronov I L, Ozherelyev V V, Barmin Yu V and Lebedinskaya E V 2008 J. Phys.: Condens. Series 98 042007
[34] Yang L, Xia J H, Wang Q, Dong C, Chen L Y, Ou X, Liu J F, Jiang J Z, Klementiev K, Saksl K, Franz H, Schneider J R and Gerward L 2006 Appl. Phys. Lett. 88 241913
[35] Nelson D R 1983 Phys. Rev. B 28 5515
[1] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[2] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[3] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[4] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[5] Heredity of clusters in the rapidly cooling processes of Al-doped Zr50Cu50 melts and its correlation with the glass-forming ability
Dadong Wen(文大东), Yonghe Deng(邓永和), Ming Gao(高明), and Zean Tian(田泽安). Chin. Phys. B, 2021, 30(7): 076101.
[6] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[7] Hydrogen-induced dynamic slowdown of metallic glass-forming liquids
Jin-Ai Gao(高津爱), Hai-Shen Huang(黄海深), and Yong-Jun Lü(吕勇军). Chin. Phys. B, 2021, 30(6): 066301.
[8] Quantitative structure-plasticity relationship in metallic glass: A machine learning study
Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2021, 30(5): 057103.
[9] Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures
Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha. Chin. Phys. B, 2021, 30(2): 026401.
[10] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[11] Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass
Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik. Chin. Phys. B, 2020, 29(8): 086402.
[12] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[13] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[14] Nearly golden-ratio order in Ta metallic glass
Yuan-Qi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2020, 29(4): 046105.
[15] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
No Suggested Reading articles found!