CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Preferred clusters in metallic glasses |
Yang Liang(杨亮)† and Guo Gu-Qing(郭古青) |
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China |
|
|
Abstract In this work, we present a feasible scheme based on framework of the sophisticated Voronoi tessellation method in order to evaluate what clusters should be preferred for building blocks in any given metallic glass, by analysing the fivefold-symmetry axes as well as the degree of structural regularity in various clusters. This scheme is well proved by a group of experiments and calculations, which may have broad implications for exploration of obtaining explicit and proper structural pictures, and understanding the structural origin of the unique properties and glass forming ability in these novel amorphous alloys.
|
Received: 21 June 2010
Revised: 27 July 2010
Accepted manuscript online:
|
PACS:
|
61.43.Fs
|
(Glasses)
|
|
64.70.P-
|
(Glass transitions of specific systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10805027), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2008397), and the Nanjing University of Aeronautics and Astronautics Research Funding, China (Grant No. NS2010168). |
Cite this article:
Yang Liang(杨亮) and Guo Gu-Qing(郭古青) Preferred clusters in metallic glasses 2010 Chin. Phys. B 19 126101
|
[1] |
Fenney J L 1977 Nature (London) 266 309
|
[2] |
Miracle D B 2006 Acta Mater. 54 4317
|
[3] |
Sheng H W, Luo W K, Alamgir F M, Bai J M and Ma E 2006 Nature (London) 439 419
|
[4] |
Ma D, Stoica A D, Yang L, Wang X L, Lu Z P, Neuefeind J, Kramer M J, Richardson J W and Proffen T 2007 Appl. Phys. Lett. 90 211908
|
[5] |
Wang X D, Yin S, Cao Q P, Jiang J Z, Franz H and Jin Z H 2008 Appl. Phys. Lett. 92 011902
|
[6] |
Zhang J X, Li H, Zhang J, Song X G and Bian X F 2009 Chin. Phys. B 18 4949
|
[7] |
Du X H and Huang J C 2008 Chin. Phys. B 17 249
|
[8] |
Wang G H, Pan H, Ke F J, Xia M F and Bai Y L 2008 Chin. Phys. B 17 259
|
[9] |
Saida J, Matsushita M and Inoue A 2001 Appl. Phys. Lett. 79 412
|
[10] |
Saksl K, Franz H, Jóvári P, Klementev K, Welter E, Ehnes A, Saida J, Inoue A and Jiang J Z 2003 Appl. Phys. Lett. 83 3924
|
[11] |
Luo W K, Sheng H W, Alamgir F M, Bai J M, He J H and Ma E 2004 Phys. Rev. Lett. 92 145502
|
[12] |
Wang S Y, Kramer M J, Xu M, Wu S, Hao S G, Sordelet D J, Ho K M and Wang C Z 2009 Phys. Rev. B 79 144205
|
[13] |
http://www.ccl.net/cca/software/SOURCES/FORTRAN /allen-tildesley-book/f.35. shtml
|
[14] |
Medvedev N N 1986 J. Comput. Phys. 67 223
|
[15] |
Schwarzenbach D 1996 Crystallography (New Youk: John Wiley & Sons)
|
[16] |
Hammersley A P, Svensson S O, Hanfland M, Fitch A N and Häusermann D 1996 High Pressure Res. 14 235
|
[17] |
Felderhoff M, Klementiev K, Grunert W, Spliethoff B, Tesche B, Bellosta Von Colbe J M, Bogdanovic B, Hartel M, Pommerin A, Schuth F and Weidenthaler C 2004 Phys. Chem. Chem. Phys. 6 4369
|
[18] |
Fukunaga T, Itoh K, Otomo T, Mori K, Sugiyama M, Kato H, Hasegawa M, Hirata A, Hirotsu Y and Aoki K 2006 Physica B 385–386 259
|
[19] |
Fujita T, Konno K, Zhang W, Kumar V, Matsuura M, Inoue A, Sakurai T and Chen M W 2009 Phys. Rev. Lett. 103 075502
|
[20] |
Wakeda M, Shibutani Y, Ogata S and Park J 2007 Intermetall. 15 139
|
[21] |
Li M Z, Wang C Z, Hao S G, Kramer M J and Ho K M 2009 Phys. Rev. B 80 184201
|
[22] |
Yang L, Yin S, Wang X D, Cao Q P, Jiang J Z, Saksl K and Franz H 2007 J. Appl. Phys. 102 083512
|
[23] |
Fukunaga T, Itoh K, Otomo T, Mori K, Sugiyama M, Kato H, Hasegawa M, Hirata A, Hirotsu Y and Hannon A C 2006 Intermetall. 14 893
|
[24] |
Delogu F 2009 Intermetall. 17 688
|
[25] |
Itoh K, Watanabe T, Otomo T, Sugiyama M, Mori K and Fukunaga T 2009 J. Alloys Compd. 483 213
|
[26] |
Saida J, Itoh K, Sato S, Imafuku M, Sanada T and Inoue A 2009 J. Phys.: Condens. Matter 21 375104
|
[27] |
Wang S Y, Wang C Z, Li M Z, Huang L, Ott R T, Kramer M J, Sordelet D J and Ho K M 2008 Phys. Rev. B 78 184204
|
[28] |
Tagaki T, Ohkubo T, Hirotsu Y, Murty B S, Hono K and Shindo D 2001 Appl. Phys. Lett. 79 485
|
[29] |
Itoh K, Otomo T, Sugiyama M, Mori K and Fukunaga T 2009 J. Phys.: Condens. Series 144 012107
|
[30] |
Hirata A, Hirotsu Y, Ohkubo T, Tanaka N and Nieh T G 2006 Intermetall. 14 903
|
[31] |
Della Valle R G, Gazzillo D, Frattini R and Pastore G 1994 Phys. Rev. B 49 12625
|
[32] |
Hirata A, Hirotsu Y, Ohkubo T, Hanada T and Bengus V Z 2006 Phys. Rev. B 74 214206
|
[33] |
Bondarev A V, Bataronov I L, Ozherelyev V V, Barmin Yu V and Lebedinskaya E V 2008 J. Phys.: Condens. Series 98 042007
|
[34] |
Yang L, Xia J H, Wang Q, Dong C, Chen L Y, Ou X, Liu J F, Jiang J Z, Klementiev K, Saksl K, Franz H, Schneider J R and Gerward L 2006 Appl. Phys. Lett. 88 241913
|
[35] |
Nelson D R 1983 Phys. Rev. B 28 5515
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|