Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 124211    DOI: 10.1088/1674-1056/19/12/124211
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Time delay in InGaN multiple quantum well laser diodes at room temperature

Ji Lian(季莲)a)†, Jiang De-Sheng(江德生)a), Zhang Shu-Ming(张书明)a), Liu Zong-Shun(刘宗顺)a), Zeng Chang(曾畅) a), Zhao De-Gang(赵德刚)a), Zhu Jian-Jun(朱建军)a), Wang Hui(王辉)a), Duan Li-Hong(段俐宏)a), and Yang Hui(杨辉)b)
a State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083, China; b Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
Abstract  This paper reports that a long delay between the beginning of pumping current pulse and the onset of optical pulse is observed in InGaN laser diodes. The delay time decreases as the pumping current increases, and the speed of the delay time reduction becomes slower as the current amplitude increases further. Such delay phenomena are remarkably less serious in laser diodes grown on GaN substrate than those on sapphire. It attributes the delay to the traps which cause a large optical loss by saturable absorption and retard the laser action. The traps can be bleached by capturing injected carriers. The effect of GaAs laser irradiation on InGaN laser action demonstrates that the traps responsible for the delay are deep centres which can be filled by the photo-assisted processes.
Keywords:  InGaN      laser diode      delay effect      saturable absorber      traps  
Received:  11 March 2010      Revised:  26 April 2010      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.By (Design of specific laser systems)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60976045, 60506001, 60836003 and 60776047), the National Basic Research Program of China (Grant No. 2007CB936700), and the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 60925017).

Cite this article: 

Ji Lian(季莲), Jiang De-Sheng(江德生), Zhang Shu-Ming(张书明), Liu Zong-Shun(刘宗顺), Zeng Chang(曾畅), Zhao De-Gang(赵德刚), Zhu Jian-Jun(朱建军), Wang Hui(王辉), Duan Li-Hong(段俐宏), and Yang Hui(杨辉) Time delay in InGaN multiple quantum well laser diodes at room temperature 2010 Chin. Phys. B 19 124211

[1] Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H and Sugimoto Y 1996 Jan. J. Appl. Phys. 35 746
[2] Kneissl M, Treat D W, Teepe M, Miyashita N and Johnson N M 2003 Appl. Phys. Lett. 82 2386
[3] Chen W H, Dai T, Du W M, Hu X D, Li R, Yang Z J, Ye X M, Zhang G Y and Zhao T P 2008 Chin. Phys. B 17 3363
[4] Chen G L, Chen H T, Chen Z, Gao Y L, Lu Y J and Zhang H B 2009 Acta Phys. Sin. 58 5700 (in Chinese)
[5] Ohta M, Ohizumi Y, Hoshina Y, Tanaka T, Yabuki Y, Funato K, Tomiya S, Goto S and Ikeda M 2007 Phys. Stat. Sol. (a) 204 2068
[6] Winogradoff N N and Kessler H 1964 Solid State Commun. 2 119
[7] Pankove J I 1968 IEEE J. Quantum Electron. 4 161
[8] Unno Y, Yamamoto M and Iida S 1970 Jpn. J. Appl. Phys. 9 1181
[9] Craford M G, Groves W O and Fox M J 1971 J. Electrochem. Soc. 118 355
[10] Zhang L Q, Zhang S M, Jiang D S, Wang H, Zhu J J, Zhao D G, Liu Z S and Yang H 2009 Chin. Phys. B 18 5350
[11] Konnerth K and Lanza C 1964 Appl. Phys. Lett. 4 120
[12] Dyment J C, Ripper J E and Lee T P 1972 J. Appl. Phys. 43 452
[13] Ripper J E and Rossi J A 1974 IEEE J. Quantum Electron. 10 435
[14] Shapiro N A, Feick H, Hong W, Cich M, Armitage R and Weber E R 2003 J. Appl. Phys. 94 4520
[15] Konnerth K 1965 IEEE Trans. Electron Devices 12 506
[16] Fenner G E 1967 Solid-State Electron. 10 753
[17] Pankove J I 1968 IEEE J. Quantum Electron. 4 427
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[3] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[4] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[5] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[6] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[7] Lattice damage in InGaN induced by swift heavy ion irradiation
Ning Liu(刘宁), Li-Min Zhang(张利民), Xue-Ting Liu(刘雪婷), Shuo Zhang(张硕), Tie-Shan Wang(王铁山), and Hong-Xia Guo(郭红霞). Chin. Phys. B, 2022, 31(10): 106103.
[8] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[9] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
[10] Numerical analysis of motional mode coupling of sympathetically cooled two-ion crystals
Li-Jun Du(杜丽军), Yan-Song Meng(蒙艳松), Yu-Ling He(贺玉玲), and Jun Xie(谢军). Chin. Phys. B, 2021, 30(7): 073702.
[11] Degradation of gate-recessed MOS-HEMTs and conventional HEMTs under DC electrical stress
Yi-Dong Yuan(原义栋), Dong-Yan Zhao(赵东艳), Yan-Rong Cao(曹艳荣), Yu-Bo Wang(王于波), Jin Shao(邵瑾), Yan-Ning Chen(陈燕宁), Wen-Long He(何文龙), Jian Du(杜剑), Min Wang(王敏), Ye-Ling Peng(彭业凌), Hong-Tao Zhang(张宏涛), Zhen Fu(付振), Chen Ren(任晨), Fang Liu(刘芳), Long-Tao Zhang(张龙涛), Yang Zhao(赵扬), Ling Lv(吕玲), Yi-Qiang Zhao(赵毅强), Xue-Feng Zheng(郑雪峰), Zhi-Mei Zhou(周芝梅), Yong Wan(万勇), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2021, 30(7): 077305.
[12] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[13] Vertical polarization-induced doping InN/InGaN heterojunction tunnel FET with hetero T-shaped gate
Yuan-Hao He(何元浩), Wei Mao(毛维), Ming Du(杜鸣), Zi-Ling Peng(彭紫玲), Hai-Yong Wang(王海永), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 058501.
[14] Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser
F D Muhammad, S A S Husin, E K Ng, K Y Lau, C A C Abdullah, and M A Mahdi. Chin. Phys. B, 2021, 30(5): 054204.
[15] A MOVPE method for improving InGaN growth quality by pre-introducing TMIn
Zi-Kun Cao(曹子坤), De-Gang Zhao(赵德刚), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Feng Liang(梁锋), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2021, 30(1): 018103.
No Suggested Reading articles found!