CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electron tunneling effects on radiative recombination in modulation n-doped ZnSe/BeTe type-II quantum wells |
Ji Zi-Wu(冀子武)a)†, Zheng Yu-Jun(郑雨军)a), and Xu Xian-Gang(徐现刚) b) |
a School of Physics, Shandong University, Jinan 250100, China; b State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China |
|
|
Abstract We have studied the cyclotron-resonance absorption and photoluminescence properties of the modulation n-doped ZnSe/BeTe/ZnSe type-II quantum wells. It is shown that only the doped sample shows electron cyclotron-resonance absorption. Also, the undoped sample shows two distinctive peaks in the spatially indirect photoluminescence spectra, and the doped one shows only one peak. The results reveal that the high concentration electrons accumulated in ZnSe quantum well layers from n-doped layers can tunnel through BeTe barrier from one well layer to the other. The electron concentration difference between these two well layers originating from the tunneling results in a new additional electric field, and can cancel out a built-in electric field as observed in the undoped structures.
|
Received: 17 March 2010
Revised: 22 June 2010
Accepted manuscript online:
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10844003 and 10874101), the Natural Science Foundation of Shandong Province, China (Grant No. Y2008A10), and the National Basic Research Program of China (Grant No. 2009CB930503). |
Cite this article:
Ji Zi-Wu(冀子武), Zheng Yu-Jun(郑雨军), and Xu Xian-Gang(徐现刚) Electron tunneling effects on radiative recombination in modulation n-doped ZnSe/BeTe type-II quantum wells 2010 Chin. Phys. B 19 117303
|
[1] |
Gao H L, Zeng Y P, Wang B Q, Zhu Z P and Wang Z G 2008 it Chin. Phys. B 17 1119
|
[2] |
Cen L B, Shen B, Qin Z X and Zhang G Y 2009 Chin. Phys. B 18 3905
|
[3] |
Wang L J, Zhang S M, Zhu J H, Zhu J J, Zhao D G, Liu Z S, Jiang D S, Wang Y T and Yang H 2010 Chin. Phys. B 19 017307
|
[4] |
Li S M, Zheng W M, Song Y X, Liu J and Chu N N 2009 Chin. Phys. B 18 3975
|
[5] |
Hao G D, Ban S L and Jia X M 2007 Chin. Phys. 16 3766
|
[6] |
Waag A, Fischer F, Sch"ull K, Baron T, Lugauer H J, Litz Th, Zehnder U, Ossau W, Gerhard T, Keim M, Reuscher G and Landwehr G 1997 Appl. Phys. Lett. 70 280
|
[7] |
Maksimov A A, Zaitsev S V, Tartakovskii I I, Kulakovskii V D, Yakovlev D R, Ossau W, Keim M, Reuscher G, Waag A and Landwehr G 1999 Appl. Phys. Lett. 75 1231
|
[8] |
Zaitsev S V, Maksimov A A, Dorozhkin P S, Kulakovskii V D, Tartakovskii I I, Yakovlev D R, Ossau W, Hansen L, Landwehr G and Waag A 2002 Phys. Rev. B 66 245310
|
[9] |
Krebs O and Voisin P 1996 Phys. Rev. Lett. 77 1829
|
[10] |
Maksimov A A, Zaitsev S V, Tartakovskii I I, Kulakovskii V D, Gippius N A, Yakovlev D R, Ossau W, Reuscher G, Waag A and Landwehr G 2000 Phys. Status Solidi B 221 523
|
[11] |
Zaitsev S V, Maksimov A A, Kulakovskii V D, Tartakovskii I I, Yakovlev D R, Ossau W, Hansen L Landwehr G and Waag A 2002 J. Appl. Phys. 91 652
|
[12] |
Butov L V and Filin A I 1998 Phys. Rev. B 58 1980
|
[13] |
Mino H, Fujikawa A, Akimoto R and Takeyama S 2004 Physica E 22 640
|
[14] |
Kim T W, Choo D C, Yoo K H, Meining C J and McCombe B D 2004 Solid State Commun. 129 533
|
[15] |
Ji Z W, Mino H, Oto K, Akimoto R, Ono K and Takeyama S 2006 Semicond. Sci. Technol. 21 87
|
[16] |
Khodaparast G A, Meyer R C, Zhang X H, Kasturiarachchi T, Doezema R E, Chung S J, Goel N, Santos M B and Wang Y J 2004 it Physica E 20 386
|
[17] |
Kotera N, Arimoto H, Miura N, Shibata K, Ueki Y, Tanaka K, Nakamura H, Mishima T, Aiki K and Washima M 2001 Physica E 11 219
|
[18] |
Ji Z W, Takeyama S, Mino H, Oto K, Muro K and Akimoto R 2008 Appl. Phys. Lett. 92 093107
|
[19] |
Ji Z W, Yamamoto H, Mino H, Akimoto R and Takeyama S 2004 it Physica E 22 632
|
[20] |
Najda S P, Yokoi H, Takeyama S, Miura N and Pfeffer P 1991 it Phys. Rev. B 44 1087
|
[21] |
Najda S P, Takeyama S, Miura N, Pfeffer P and Zawadzki W 1989 Phys. Rev. B 40 6189
|
[22] |
Momose H, Okai H, Deguchi H, Mori N and Takeyama S 2006 it Physica E 32 309
|
[23] |
Astakhov G V, Yakovlev D R, Kochereshko V P, Ossau W, Faschinger W, Puls J, Henneberger F, Crooker S A, McCulloch Q, Wolverson D, Gippius N A and Waag A 2002 Phys. Rev. B 65 165335
|
[24] |
Nagelstrasser M, Dr"oge H, Steinr"uck H -P Fischer F, Litz T, Waag A and Landwehr G Fleszar A and Hanke W 1998 Phys. Rev. B 58 10394
|
[25] |
Walsh D, Mazuruk K and Benzaquen M 1987 Phys. Rev. B 36 2883
|
[26] |
Ukita M, Hiei F, Nakano K and Ishibashi A 1995 Appl. Phys. Lett. 66 209
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|