Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 107307    DOI: 10.1088/1674-1056/19/10/107307
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Invariable optical properties of phosphor-free white light-emitting diode under electrical stress

Long Hao(龙浩), Fang Hao(方浩), Qi Sheng-Li(齐胜利), Sang Li-Wen(桑丽雯), Cao Wen-Yu(曹文彧), Yan Jian(颜建), Deng Jun-Jing(邓俊静), Yang Zhi-Jian(杨志坚), and Zhang Guo-Yi(张国义)
State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
Abstract  This paper reports that a dual-wavelength white light-emitting diode is fabricated by using a metal-organic chemical vapor deposition method. Through a 200-hours' current stress, the reverse leakage current of this light-emitting diode increases with the aging time, but the optical properties remained unchanged despite the enhanced reverse leakage current. Transmission electron microscopy and cathodeluminescence images show that indium atoms were assembled in and around V-shape pits with various compositions, which can be ascribed to the emitted white light. Evolution of cathodeluminescence intensities under electron irradiation is also performed. Combining cathodeluminescence intensities under electron irradiation and above results, the increase of leakage channels and crystalline quality degradation are realized. Although leakage channels increase with aging, potential fluctuation caused by indium aggregation can effectively avoid the impact of leakage channels. Indium aggregation can be attributed to the mechanism of preventing optical degradation in phosphor-free white light-emitting diode.
Keywords:  light-emitting diode      gallium nitride      degradation      V-shape pits  
Received:  04 March 2010      Revised:  13 April 2010      Accepted manuscript online: 
PACS:  61.80.Fe (Electron and positron radiation effects)  
  78.60.Hk (Cathodoluminescence, ionoluminescence)  
  78.66.-w (Optical properties of specific thin films)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  85.40.Sz (Deposition technology)  
  85.60.Jb (Light-emitting devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60990314, 60976009, 60577146, U0834001) and the National Key Basic Research and Development Project (973) of China (Grant No. 2007CB307004).

Cite this article: 

Long Hao(龙浩), Fang Hao(方浩), Qi Sheng-Li(齐胜利), Sang Li-Wen(桑丽雯), Cao Wen-Yu(曹文彧), Yan Jian(颜建), Deng Jun-Jing(邓俊静), Yang Zhi-Jian(杨志坚), and Zhang Guo-Yi(张国义) Invariable optical properties of phosphor-free white light-emitting diode under electrical stress 2010 Chin. Phys. B 19 107307

[1] Nakamura S, Senoh M, Iwasa N, Nagahama S, Yamada T and Mukai T 1995 Jpn. J. Appl. Phys. 34 L1332
[2] Nakamura S, Mukai T, Senoh M, Nagahama S and Iwasa N 1993 Jpn. J. Appl. Phys. 32 L8
[3] Lu G J, Zhu J J, Jiang D S, Wang Y T, Zhao D G, Liu Z S, Zhang S M and Yang H 2010 Chin. Phys. B 19 026804
[4] Li X H, Zhong F, Qiu K, Yin Z J and Ji C J 2008 Chin. Phys. B 17 1360
[5] Xu H Y, Jian A Q, Xue C Y, Chen Y, Zhang B Z, Zhang W D, Zhang Z G and Feng Z 2008 Chin. Phys. B 17 2245
[6] Trevisanello L, Meneghini M, Mura G, Vanzi M, Paversi M, Meneghesso G and Zanoni E 2008 IEEE. Trans. Dev. Mater. Rel. 8 304
[7] Yu T J, Shang S P, Chen Z Z, Qin Z X, Lin L, Yang Z J and Zhang G Y 2007 J. Luminescence 122 696
[8] Sheu J K, Pan C J, Chi G C, Kuo C H, Wu L W, Chen C H, Chang S J and Su Y K 2002 IEEE Photonics Technol. Lett. 14 450
[9] Li D S, Chen H, Yu H B, Jia H Q, Huang Q and Zhou J M 2004 J. Appl. Phys. 96 1111
[10] Rossi F, Pavesi M, Meneghini M, Salviati G, Manfredi M, Meneghesso G, Castaldini A, Rigutti L, Strass U, Zehnder U and Zanoni E 2006 J. Appl. Phys. 99 053104
[11] Soh C B, Liu W, Teng J H, Chow S Y, Ang S S and Chua S J 2008 Appl. Phys. Lett. 92 261909
[12] Fang H, Sang L W, Zhao L B, Qi S L, Zhang Y Z, Yang X L, Yang Z J and Zhang G Y 2008 Appl. Phys. Lett. 93 261117
[13] Cho C Y, Park I K, Kown M K, Kim J Y, Park S J, Jung S R and Kwon S W 2008 Appl. Phys. Lett. 93 241109
[14] Daniel L B, Osinski M, Perlin P, Eliseev P G and Lee J Y 1999 Microelectronics Reliability 39 1219
[15] Zhao L X, Thrush E J and Humphreys C J 2008 J. Appl. Phys. 103 024501
[16] Nakamura S and Chichibu F 2000 Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes (London and New York: Taylor & Francis) p. 271
[17] Lin Y S, Ma K J, Hsu C, Feng S W, Cheng Y C, Liao C C, Yang C C, Chou C C, Lee C M and Chyi J I 2006 Appl. Phys. Lett. 77 19
[18] Yang Z J, Tong Y Z, Zhang G Y, Du X L, Fujii N, Jia A W and Yoshikawa A 2000 Phys. Stat. Sol. (a) 180 81
[19] Chichibu S, Azuhata T, Sota T and Nakamura S 1996 Appl. Phys. Lett. 69 4188
[20] Narukawa Y, Kawakami Y, Fujita S, Fujita S and Nakamura S 1997 Phys. Rev. B 55 R1938
[21] Nakamura S and Fasol G 1997 The Blue Laser Diode (New York: Springer) p. 215 endfootnotesize
[1] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[2] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[3] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[4] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[5] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[6] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[7] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[8] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[9] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[10] Large-area fabrication: The next target of perovskite light-emitting diodes
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙). Chin. Phys. B, 2021, 30(8): 088502.
[11] Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation
Wen-Si Ai(艾文思), Jie Liu(刘杰), Qian Feng(冯倩), Peng-Fei Zhai(翟鹏飞), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Sheng-Xia Zhang(张胜霞), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Xiao-Yu Yan(闫晓宇), and You-Mei Sun(孙友梅). Chin. Phys. B, 2021, 30(5): 056110.
[12] Analysis on degradation mechanisms of normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor
Si-De Song(宋思德), Su-Zhen Wu(吴素贞), Guo-Zhu Liu(刘国柱), Wei Zhao(赵伟), Yin-Quan Wang(王印权), Jian-Wei Wu(吴建伟), and Qi He(贺琪). Chin. Phys. B, 2021, 30(4): 047103.
[13] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[14] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[15] Numerical simulation of acoustic field under mechanical stirring
Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(10): 104302.
No Suggested Reading articles found!