Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(10): 4287-4291    DOI: 10.1088/1674-1056/18/10/032
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Investigation of transmission resonances on the one-dimensional metallic cylindrical gratings in THz frequency range

Chen Hua(陈华)a)†, Sun Yi-Min(孙毅民)b), and Wang Li(汪力)b)
a Department of Physics, Southeast University, Nanjing 211189, China; b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190, China
Abstract  In the experiments of THz wave transmitting through the metallic cylindrical gratings fabricated by sub-wavelength brass wires, this paper reports that the discrepancy in the sharp resonances occurred as the grating perpendicular or parallel to the electric vector are observed. A simulation based on the finite difference time domain (FDTD) indicated that the enhanced transmission through the grating is attributed to the combined effects of surface plasmons and cavity modes in the perpendicular condition, while the cavity modes dominate the resonant transmission under the other conditions. Additional experimental data and calculated results show that ~1 enhanced coupling efficiency can be realized in some THz frequency, which could be applied to the design and improvement of various optoelectronic devices, or detection of biological molecule and powder samples, etc.
Keywords:  THz wave transmitting      gratings      surface plasmons      cavity modes  
Received:  11 February 2009      Revised:  11 March 2009      Accepted manuscript online: 
PACS:  42.79.Dj (Gratings)  
  02.70.Bf (Finite-difference methods)  
  07.57.Kp (Bolometers; infrared, submillimeter wave, microwave, and radiowave receivers and detectors)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.70.Gq (Microwave and radio-frequency interactions)  

Cite this article: 

Chen Hua(陈华), Sun Yi-Min(孙毅民), and Wang Li(汪力) Investigation of transmission resonances on the one-dimensional metallic cylindrical gratings in THz frequency range 2009 Chin. Phys. B 18 4287

[1] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[2] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[3] Coupling characteristics of laterally coupled gratings with slots
Kun Tian(田锟), Yonggang Zou(邹永刚), Linlin Shi(石琳琳), He Zhang(张贺), Yingtian Xu(徐英添), Jie Fan(范杰), Hui Tang(唐慧), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(11): 114208.
[4] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[5] Dual-function beam splitter of high contrast gratings
Wen-Jing Fang(房文敬), Xin-Ye Fan(范鑫烨), Hui-Juan Niu(牛慧娟), Xia Zhang (张霞), Heng-Ying Xu(许恒迎), and Cheng-Lin Bai(白成林). Chin. Phys. B, 2021, 30(4): 044205.
[6] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[7] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[8] Dynamic shaping of vectorial optical fields based on two-dimensional blazed holographic grating
Xinyi Wang(王心怡), Yuan Gao(高源), Zhaozhong Chen(陈召忠), Jianping Ding(丁剑平), Hui-Tian Wang(王慧田). Chin. Phys. B, 2020, 29(1): 014208.
[9] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[10] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[11] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
[12] Tunable graphene-based mid-infrared band-pass planar filter and its application
Somayyeh Asgari, Hossein Rajabloo, Nosrat Granpayeh, Homayoon Oraizi. Chin. Phys. B, 2018, 27(8): 084212.
[13] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[14] Highly stable two-dimensional graphene oxide: Electronic properties of its periodic structure and optical properties of its nanostructures
Qin Zhang(张琴), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(2): 027301.
[15] Diffraction properties of binary graphene sheet arrays
Yang Fan(樊洋), Cong Chen(陈聪), Ding-Guo Li(李定国). Chin. Phys. B, 2017, 26(1): 017302.
No Suggested Reading articles found!