Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 027301    DOI: 10.1088/1674-1056/27/2/027301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Highly stable two-dimensional graphene oxide: Electronic properties of its periodic structure and optical properties of its nanostructures

Qin Zhang(张琴)1, Hong Zhang(张红)1,2, Xin-Lu Cheng(程新路)2
1. College of Physical Science and Technology, Sichuan University, Chengdu 610065, China;
2. Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China
Abstract  According to first principle simulations, we theoretically predict a type of stable single-layer graphene oxide (C2O). Using density functional theory (DFT), C2O is found to be a direct gap semiconductor. In addition, we obtain the absorption spectra of the periodic structure of C2O, which show optical anisotropy. To study the optical properties of C2O nanostructures, time-dependent density functional theory (TDDFT) is used. The C2O nanostructure has a strong absorption near 7 eV when the incident light polarizes along the armchair-edge. Besides, we find that the optical properties can be controlled by the edge configuration and the size of the C2O nanostructure. With the elongation strain increasing, the range of light absorption becomes wider and there is a red shift of absorption spectrum.
Keywords:  two-dimensional (2D) materials      graphene oxide      surface plasmons  
Received:  18 September 2017      Revised:  06 November 2017      Accepted manuscript online: 
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303600) and the National Natural Science Foundation of China (Grant Nos. 11474207 and 11374217).
Corresponding Authors:  Hong Zhang     E-mail:  hongzhang@scu.edu.cn
About author:  73.20.At; 71.15.Mb; 73.20.Mf

Cite this article: 

Qin Zhang(张琴), Hong Zhang(张红), Xin-Lu Cheng(程新路) Highly stable two-dimensional graphene oxide: Electronic properties of its periodic structure and optical properties of its nanostructures 2018 Chin. Phys. B 27 027301

[1] Nie S and Emery S R 1997 Science 275 5303
[2] Xu H, Bjerneld E J and Käll M 1999 Phys. Rev. Lett. 83 4357
[3] Maier S A, Kik P G, and Atwater H A 2002 Appl. Phys. Lett. 81 1714
[4] Yan J and Gao S W 2008 Phys. Rev. B 78 235413
[5] Hirsch L R, Stafford R J and Bankson J A 2003 Proc. Nat. Acad. Sci. 100 13549
[6] Bachelier G, Russier-Antoine I and Benichou E 2008 Phys. Rev. Lett. 101 197401
[7] Brown L V, Sobhani H and Lassiter J B 2010 ACS Nano 4 819
[8] Yin H F and Zhang H 2012 Physica B:Condens. Matter 407 416
[9] Rao C N R, Sood A K and Subrahmanyam K S 2009 Angewandte Chemie International Edition 48 7752
[10] Allen M J, Tung V C and Kaner R B 2010 Chem. Rev. 110 132
[11] Yin Y H, Niu Y X and Ding M 2016 Chin. Phys. Lett. 33 057202
[12] Sun M, Ren Q and Zhao Y 2017 Carbon 120 265
[13] Sun M L, Chou J P and Ren Q 2017 Appl. Phys. Lett. 110 392
[14] Kim J, Cote L J and Kim F 2010 J. Am. Chem. Soc. 132 8180
[15] Suarez A M, Radovic L R and Bar-Ziv E 2011 Phys. Rev. Lett. 106 146802
[16] Gao W, Alemany L B and Ci L 2009 Nat. Chem. 1 403
[17] Loh K P, Bao Q and Eda G 2010 Nat. Chem. 2 1015
[18] Huang B, Xiang H and Xu Q 2013 Phys. Rev. Lett. 110 085501
[19] Li L Y, Yan B P and Zhang C M 2012 Acta Phys. Sin. 61 167506(in Chinese)
[20] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Segall M D, Lindan P J D and Probert M J 2002 J. Phys.:Condens. Matter 14 2717
[22] Baroni S, de Gironcoli S 2001 Rev. Mod. Phys 73 515
[23] Marques M A L, Castro A and Bertsch G F 2003 Comput. Phys. Commun. 151 60
[24] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[25] Gerlich D 1993 J. Chem. Soc. Faraday Trans. 89 2199
[26] Liu D, Every A G and Tománek D 2016 Phys. Rev. B 94 165432
[27] Nagare B J 2015 RSC Adv. 5 77478
[28] Yin H and Zhang H 2012 J. Appl. Phys. 111 103502
[29] Zhang K and Zhang H 2014 J. Phys. Chem. C 118 635
[30] Shao L, Ruan Q F and Li Y 2017 Chin. Phys. B 26 036802
[31] Yuan S J, Zhang H and Cheng X L 2017 Plasmonics 1
[32] Lalmi B, Oughaddou H and Enriquez H 2010 Appl. Phys. Lett. 97 223109
[33] Vogt P, De Padova P and Quaresima C 2012 Phys. Rev. Lett. 108 155501
[34] Li J, Xu S and Zhang J Y 2017 Chin. Phys. B 26 036802
[1] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[2] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[3] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[4] Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process
Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊). Chin. Phys. B, 2022, 31(2): 028103.
[5] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[6] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[7] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[8] Broadband absorption enhancement with ultrathin MoS2 film in the visible regime
Jun Wu(吴俊). Chin. Phys. B, 2021, 30(2): 024208.
[9] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[10] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[11] High sensitive pressure sensors based on multiple coating technique
Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(2): 028102.
[12] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[13] First-principles insight into Li and Na ion storage in graphene oxide
Shu-Ying Zhong(钟淑英), Jing Shi(石晶), Wen-Wei Luo(罗文崴), Xue-Ling Lei(雷雪玲). Chin. Phys. B, 2019, 28(7): 078201.
[14] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[15] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
No Suggested Reading articles found!