Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 044205    DOI: 10.1088/1674-1056/abd68d

Dual-function beam splitter of high contrast gratings

Wen-Jing Fang(房文敬)1, Xin-Ye Fan(范鑫烨)1, Hui-Juan Niu(牛慧娟)1,2, Xia Zhang (张霞)1, Heng-Ying Xu(许恒迎)1, and Cheng-Lin Bai(白成林)1,†
1 Shandong Provincial Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252000, China; 2 Institute of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT); State Key Laboratory of Information Photonics and Optical Communications, Beijing 100876, China
Abstract  We present the design and fabrication of a novel dual-function high contrast gratings that can be used as a polarization-selective beam splitter with transverse magnetic polarization, which performs two independent functions, i.e., reflection focusing and power equalization at a wavelength of 1550 nm. This dual-function grating profile is optimized by the rigorous coupled-wave analysis and the finite-element method. Simple analytical expressions of phase and modal guideline for the beam splitter design are given. The beam splitter based on the grating structure is experimentally studied at a distance of 160 μ m from the reflection plane, the results are consistent with the theoretical results basically.
Keywords:  beam splitter      high contrast gratings      polarization-selective      focusing      phase modulation  
Received:  14 October 2020      Revised:  13 December 2020      Accepted manuscript online:  24 December 2020
PACS:  42.79.Dj (Gratings)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
  42.68.Mj (Scattering, polarization)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
Fund: Project supported by the Open Fund of the State Key Laboratory of Information Photonics and Optical Communication, Beijing University of Posts and Telecommunications, China (Grant No. IPOC2019A009) and the National Natural Science Foundation of China (Grant Nos. 61501214 and 61501213).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Wen-Jing Fang(房文敬), Xin-Ye Fan(范鑫烨), Hui-Juan Niu(牛慧娟), Xia Zhang (张霞), Heng-Ying Xu(许恒迎), and Cheng-Lin Bai(白成林) Dual-function beam splitter of high contrast gratings 2021 Chin. Phys. B 30 044205

1 Carie J, Caas G and Skrzypczyk P 2020 Optica 7 542
2 Leòn-Rodr\'íguez Miguel, Rayas J A and Cordero Raùl R 2018 Appl. Opt. 57 2727
3 Liu Y, Lu J and Peng Z 2019 Chin. Phys. B 28 030303
4 Zhang M, Malureanu R and Krüger A C 2010 Opt. Express 18 14944
5 Tee D C, Tamchek N, Shee Y G and Mahamd Adikan F R 2014 Opt. Express 22 24241
6 Zhang D, Ren M, Wei W and Gao N 2018 Optim. Lett. 43 267
7 Zhang M, Malureanu R, Asger C K and Kristensen M 2010 Opt. Express 18 14944
8 Chen B, Huang L, Li Y, Liu C and Li G 2012 Chin. Opt. Lett. 10 111301
9 Chase C, Rao Y, Hofmann W and Chang-Hasnain C J 2010 Opt. Express 18 15461
10 Duan X, Huang Y, Ren X, Shang Y, Fan X and Hu F 2012 IEEE Photon. Technol. Lett. 24 863
11 Guo Z and Xiao J 2017 IEEE Photon. Technol. Lett. 29 1800
12 Huang C C 2020 Sci. Rep. 10 12841
13 Ni B and Xiao J 2018 Opt. Express 26 33942
14 Mateus C F R, Huang M C Y, Deng Y, Neureuther A R and Chang-Hasnain C J 2004 IEEE Photon. Technol. Lett. 16 518
15 Bekele D A, Park G C and Malureanu R 2015 IEEE Photon. Technol. Lett. 27 1733
16 Zhang R, Wang Y and Zhang Y 2014 Chin. Opt. Lett. 12 020502
17 Lu F, Sedgwick F G and Karagodsky V 2010 Opt. Express 18 12606
18 Chen W T, Zhu A Y, Khorasaninejad M, Shi Z, Sanjeev V and Capasso F 2017 Nano Lett. 17 3188
19 Yang J and Zhou Z 2012 Opt. Commun. 285 1494
20 Feng J, Zhou C, Zheng J, Cao H and Lv P 2009 Appl. Opt. 48 2697
21 Wang B, Gao C, Wen K, Meng Z, Nie Z, Xing X, Chen L, Lei L and Zhou J 2019 Mod. Phys. Lett. B 33 1950420
22 Gao C, Wang B and Wen K 2019 Mod. Phys. Lett. B 33 1950420
23 Szarvas, Tamàs and Kis Z 2016 Opt. Eng. 55 077103
24 Wang B, Li H, Shu W, Li W and Li C 2016 Mod. Phys. Lett. B 30 1550257
25 Guo L and Ma J 2014 Optik -International Journal for Light and Electron Opt. 125 232
26 Wang B, Lei L, Chen L and Zhou J 2012 Opt. Commun. 285 4599
27 Zheng J, Zhou C, Feng J, Cao H and Lu P 2008 J. Opt. A: Pure Appl. Opt. 11 015710
28 Zhu W, Wang B and Wen K 2019 Optik -International Journal for Light and Electron Opt. 202 163503
29 Zhang J 2020 Photon. Res. 8 426
30 Magnusson R and Shokooh-Saremi M 2008 Opt. Express 16 3456
31 Karagodsky V, Sedgwick F G and Chang-Hasnain C J 2010 Opt. Express 18 16973
32 Ding Y and Magnusson R 2004 Opt. Express 12 5661
33 Afzal F O, Bian Y and Peng B 2020 IEEE Photon. Technol. Lett. 99 1
34 Fang W, Huang Y and Duan X 2016 Chin. Phys. B 25 114213
35 Fang W, Huang Y and Fei J 2017 Opt. Commun. 402 572
36 Moharam M G, Grann E B and Pommet D A 1995 J. Opt. Soc. Am. 12 1068
37 Moharam M G and Gaylord T K 1981 J. Opt. Soc. Am. 71 811
38 Carletti L High-index contrast grating reflectors for wavefront engineering, Master Dissertation (Denmark: Technical University of Denmark)
39 Vanbrabant P J M, Beeckman J and James R 2009 Opt. Express 17 10895
40 Chen W T, Khorasaninejad M, Oh J and Capasso F 2016 Nano Lett. 16 3732
[1] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[2] Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic?
Alena Nastulyavichus, Nikita Smirnov, and Sergey Kudryashov. Chin. Phys. B, 2022, 31(7): 077803.
[3] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[4] An ultrasonic multi-wave focusing and imaging method for linear phased arrays
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), and Bi-Xing Zhang(张碧星). Chin. Phys. B, 2021, 30(7): 074301.
[5] High-efficiency reflection phase tunable metasurface at near-infrared frequencies
Ce Li(李策), Wei Zhu(朱维), Shuo Du(杜硕), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2021, 30(5): 057802.
[6] Three-dimensional spatial multi-point uniform light focusing through scattering media based on feedback wavefront shaping
Fan Yang(杨帆), Yang Zhao(赵杨), Chengchao Xiang(向成超), Qi Feng(冯祺), and Yingchun Ding(丁迎春). Chin. Phys. B, 2021, 30(4): 044207.
[7] Propagation properties and radiation force of circular Airy Gaussian vortex beams in strongly nonlocal nonlinear medium
Xinyu Liu(刘欣宇), Chao Sun(孙超), and Dongmei Deng(邓冬梅). Chin. Phys. B, 2021, 30(2): 024202.
[8] Refocusing and locating effect of fluorescence scattering field
Jian-Gong Cui(崔建功), Ya-Xin Yu(余亚鑫), Xiao-Xia Chu(楚晓霞), Rong-Yu Zhao(赵荣宇), Min Zhu(祝敏), Fan Meng(孟凡), and Wen-Dong Zhang(张文栋). Chin. Phys. B, 2021, 30(12): 124210.
[9] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[10] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[11] Phase-shift interferometry measured transmission matrix of turbid medium: Three-step phase-shifting interference better than four-step one
Xi-Cheng Zhang(张熙程), Zuo-Gang Yang(杨佐刚), Long-Jie Fang(方龙杰), Jing-Lei Du(杜惊雷), Zhi-You Zhang(张志友), and Fu-Hua Gao(高福华). Chin. Phys. B, 2021, 30(10): 104202.
[12] Controlling the light wavefront through a scattering medium based on direct digital frequency synthesis technology
Yuan Yuan(袁园), Min-Yuan Sun(孙敏远), Yong Bi(毕勇), Wei-Nan Gao(高伟男), Shuo Zhang(张硕), and Wen-Ping Zhang(张文平). Chin. Phys. B, 2021, 30(1): 014209.
[13] Three-Airy autofocusing beams
Xiao-Hong Zhang(张小红), Fei-Li Wang(王飞利), Lu-Yang Bai(白露阳), Ci-Bo Lou(楼慈波), Yi Liang(梁毅). Chin. Phys. B, 2020, 29(6): 064204.
[14] Phase-modulated quadrature squeezing in two coupled cavities containing a two-level system
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Xue-Fang Zhou(周雪芳), Mei-Hua Bi(毕美华), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2020, 29(5): 050308.
[15] Far-field vector-diffraction of off-axis parabolic mirror under oblique incidence
Xia-Hui Zeng(曾夏辉), Xi-Yao Chen(陈曦曜). Chin. Phys. B, 2020, 29(3): 034202.
No Suggested Reading articles found!