ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Dual-function beam splitter of high contrast gratings |
Wen-Jing Fang(房文敬)1, Xin-Ye Fan(范鑫烨)1, Hui-Juan Niu(牛慧娟)1,2, Xia Zhang (张霞)1, Heng-Ying Xu(许恒迎)1, and Cheng-Lin Bai(白成林)1,† |
1 Shandong Provincial Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252000, China; 2 Institute of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT); State Key Laboratory of Information Photonics and Optical Communications, Beijing 100876, China |
|
|
Abstract We present the design and fabrication of a novel dual-function high contrast gratings that can be used as a polarization-selective beam splitter with transverse magnetic polarization, which performs two independent functions, i.e., reflection focusing and power equalization at a wavelength of 1550 nm. This dual-function grating profile is optimized by the rigorous coupled-wave analysis and the finite-element method. Simple analytical expressions of phase and modal guideline for the beam splitter design are given. The beam splitter based on the grating structure is experimentally studied at a distance of 160 μ m from the reflection plane, the results are consistent with the theoretical results basically.
|
Received: 14 October 2020
Revised: 13 December 2020
Accepted manuscript online: 24 December 2020
|
PACS:
|
42.79.Dj
|
(Gratings)
|
|
42.79.Fm
|
(Reflectors, beam splitters, and deflectors)
|
|
42.68.Mj
|
(Scattering, polarization)
|
|
42.60.Jf
|
(Beam characteristics: profile, intensity, and power; spatial pattern formation)
|
|
Fund: Project supported by the Open Fund of the State Key Laboratory of Information Photonics and Optical Communication, Beijing University of Posts and Telecommunications, China (Grant No. IPOC2019A009) and the National Natural Science Foundation of China (Grant Nos. 61501214 and 61501213). |
Corresponding Authors:
†Corresponding author. E-mail: baichenglin@lcu.edu.cn
|
Cite this article:
Wen-Jing Fang(房文敬), Xin-Ye Fan(范鑫烨), Hui-Juan Niu(牛慧娟), Xia Zhang (张霞), Heng-Ying Xu(许恒迎), and Cheng-Lin Bai(白成林) Dual-function beam splitter of high contrast gratings 2021 Chin. Phys. B 30 044205
|
1 Carie J, Caas G and Skrzypczyk P 2020 Optica 7 542 2 Leòn-Rodr\'íguez Miguel, Rayas J A and Cordero Raùl R 2018 Appl. Opt. 57 2727 3 Liu Y, Lu J and Peng Z 2019 Chin. Phys. B 28 030303 4 Zhang M, Malureanu R and Krüger A C 2010 Opt. Express 18 14944 5 Tee D C, Tamchek N, Shee Y G and Mahamd Adikan F R 2014 Opt. Express 22 24241 6 Zhang D, Ren M, Wei W and Gao N 2018 Optim. Lett. 43 267 7 Zhang M, Malureanu R, Asger C K and Kristensen M 2010 Opt. Express 18 14944 8 Chen B, Huang L, Li Y, Liu C and Li G 2012 Chin. Opt. Lett. 10 111301 9 Chase C, Rao Y, Hofmann W and Chang-Hasnain C J 2010 Opt. Express 18 15461 10 Duan X, Huang Y, Ren X, Shang Y, Fan X and Hu F 2012 IEEE Photon. Technol. Lett. 24 863 11 Guo Z and Xiao J 2017 IEEE Photon. Technol. Lett. 29 1800 12 Huang C C 2020 Sci. Rep. 10 12841 13 Ni B and Xiao J 2018 Opt. Express 26 33942 14 Mateus C F R, Huang M C Y, Deng Y, Neureuther A R and Chang-Hasnain C J 2004 IEEE Photon. Technol. Lett. 16 518 15 Bekele D A, Park G C and Malureanu R 2015 IEEE Photon. Technol. Lett. 27 1733 16 Zhang R, Wang Y and Zhang Y 2014 Chin. Opt. Lett. 12 020502 17 Lu F, Sedgwick F G and Karagodsky V 2010 Opt. Express 18 12606 18 Chen W T, Zhu A Y, Khorasaninejad M, Shi Z, Sanjeev V and Capasso F 2017 Nano Lett. 17 3188 19 Yang J and Zhou Z 2012 Opt. Commun. 285 1494 20 Feng J, Zhou C, Zheng J, Cao H and Lv P 2009 Appl. Opt. 48 2697 21 Wang B, Gao C, Wen K, Meng Z, Nie Z, Xing X, Chen L, Lei L and Zhou J 2019 Mod. Phys. Lett. B 33 1950420 22 Gao C, Wang B and Wen K 2019 Mod. Phys. Lett. B 33 1950420 23 Szarvas, Tamàs and Kis Z 2016 Opt. Eng. 55 077103 24 Wang B, Li H, Shu W, Li W and Li C 2016 Mod. Phys. Lett. B 30 1550257 25 Guo L and Ma J 2014 Optik -International Journal for Light and Electron Opt. 125 232 26 Wang B, Lei L, Chen L and Zhou J 2012 Opt. Commun. 285 4599 27 Zheng J, Zhou C, Feng J, Cao H and Lu P 2008 J. Opt. A: Pure Appl. Opt. 11 015710 28 Zhu W, Wang B and Wen K 2019 Optik -International Journal for Light and Electron Opt. 202 163503 29 Zhang J 2020 Photon. Res. 8 426 30 Magnusson R and Shokooh-Saremi M 2008 Opt. Express 16 3456 31 Karagodsky V, Sedgwick F G and Chang-Hasnain C J 2010 Opt. Express 18 16973 32 Ding Y and Magnusson R 2004 Opt. Express 12 5661 33 Afzal F O, Bian Y and Peng B 2020 IEEE Photon. Technol. Lett. 99 1 34 Fang W, Huang Y and Duan X 2016 Chin. Phys. B 25 114213 35 Fang W, Huang Y and Fei J 2017 Opt. Commun. 402 572 36 Moharam M G, Grann E B and Pommet D A 1995 J. Opt. Soc. Am. 12 1068 37 Moharam M G and Gaylord T K 1981 J. Opt. Soc. Am. 71 811 38 Carletti L High-index contrast grating reflectors for wavefront engineering, Master Dissertation (Denmark: Technical University of Denmark) 39 Vanbrabant P J M, Beeckman J and James R 2009 Opt. Express 17 10895 40 Chen W T, Khorasaninejad M, Oh J and Capasso F 2016 Nano Lett. 16 3732 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|