Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(10): 4281-4286    DOI: 10.1088/1674-1056/18/10/031
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Magnetically insulated transmission line oscillator oscillated in a modified HEM11 mode

Wang Dong(王冬), Chen Dai-Bing(陈代兵), Qin Fen(秦奋), and Fan Zhi-Kai(范植开)
Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  This paper puts forward a novel magnetically insulated transmission line oscillator (MILO) for the first time which takes a modified HEM11 mode as its main interaction mode. The excitation of the oscillation mode is made possible by carefully adjusting the arrangements of each resonant cavity in a two-dimensional (2-D) slow wave structure. The high frequency characteristics are analyzed and a PIC simulation is carried out; the detailed results are discussed to get a better understanding of this new MILO. Employing an electron beam of about 441 kV and 39.7 kA, it finds that the modified HEM11 mode MILO generates a high power microwave output of about 1.47 GW at 1.45 GHz. The power conversion efficiency is about 8.4% and the generated microwave is in a TE11-like circularly polarized mode; its polarization direction is decided by the rotation direction of the SWS.
Keywords:  high power microwave      magnetically insulated transmission line oscillator      asymmetric mode      HEM_11 mode      circularly polarized mode  
Received:  13 January 2009      Revised:  24 February 2009      Accepted manuscript online: 
PACS:  84.40.Az (Waveguides, transmission lines, striplines)  
  84.30.Ng (Oscillators, pulse generators, and function generators)  
  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
Fund: Project supported by the Science Foundation of the China Academy of Engineering Physics (Grant No 2008B0402046).

Cite this article: 

Wang Dong(王冬), Chen Dai-Bing(陈代兵), Qin Fen(秦奋), and Fan Zhi-Kai(范植开) Magnetically insulated transmission line oscillator oscillated in a modified HEM11 mode 2009 Chin. Phys. B 18 4281

[1] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[2] A compact dual-band radiation system
Yuan-Qiang Yu(于元强), Yu-Wei Fan(樊玉伟), and Xiao-Yu Wang(王晓玉)$. Chin. Phys. B, 2020, 29(11): 118402.
[3] Modes decomposition in particle-in-cell software CEMPIC
Aiping Fang(方爱平)†, Shanshan Liang(梁闪闪), Yongdong Li(李永东), Hongguang Wang(王洪广), and Yue Wang(王玥). Chin. Phys. B, 2020, 29(10): 100205.
[4] Transmission properties of microwave in rectangular waveguide through argon plasma
Xiaoyu Han(韩晓宇), Dawei Li(李大伟), Meie Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yujian Li(李雨键), Junhong Wang(王均宏). Chin. Phys. B, 2019, 28(3): 035204.
[5] A low-outgassing-rate carbon fiber array cathode
An-Kun Li(李安昆), Yu-Wei Fan(樊玉伟), Bao-Liang Qian(钱宝良), Zi-Cheng Zhang(张自成), Tao Xun(荀涛). Chin. Phys. B, 2018, 27(2): 028401.
[6] Air breakdown induced by the microwave with two mutually orthogonal and heterophase electric field components
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新). Chin. Phys. B, 2017, 26(9): 099201.
[7] Damage effect and mechanism of the GaAs high electron mobility transistor induced by high power microwave
Yang Liu(刘阳), Chang-Chun Chai(柴常春), Yin-Tang Yang(杨银堂), Jing Sun(孙静), Zhi-Peng Li(李志鹏). Chin. Phys. B, 2016, 25(4): 048504.
[8] Simulation and experimental study of high power microwave damage effect on AlGaAs/InGaAs pseudomorphic high electron mobility transistor
Yu Xin-Hai (于新海), Chai Chang-Chun (柴常春), Liu Yang (刘阳), Yang Yin-Tang (杨银堂), Xi Xiao-Wen (席晓文). Chin. Phys. B, 2015, 24(4): 048502.
[9] A tunable magnetically insulated transmission line oscillator
Fan Yu-Wei (樊玉伟), Wang Xiao-Yu (王晓玉), He Liang (赫亮), Zhong Hui-Huang (钟辉煌), Zhang Jian-De (张建德). Chin. Phys. B, 2015, 24(3): 035203.
[10] Hardening measures for bipolar transistor against microwave-induced damage
Chai Chang-Chun (柴常春), Ma Zhen-Yang (马振洋), Ren Xing-Rong (任兴荣), Yang Yin-Tang (杨银堂), Zhao Ying-Bo (赵颖博), Yu Xin Hai (于新海). Chin. Phys. B, 2013, 22(6): 068502.
[11] Pulsed microwave damage trend of bipolar transistor as a function of pulse parameters
Ma Zhen-Yang (马振洋), Chai Chang-Chun (柴常春), Ren Xing-Rong (任兴荣), Yang Yin-Tang (杨银堂), Zhao Ying-Bo (赵颖博), Qiao Li-Ping (乔丽萍 ). Chin. Phys. B, 2013, 22(2): 028502.
[12] HEM11 mode magnetically insulated transmission[2mm] line oscillator: simulation and experiment
Wang Dong (王冬), Qin Fen (秦奋), Wen Jie (文杰), Chen Dai-Bing (陈代兵), Jin Xiao (金晓), An Hai-Shi (安海狮), Zhang Xin-Kai (张新凯 ). Chin. Phys. B, 2012, 21(8): 084101.
[13] Experimental investigation of a compact relativistic magnetron with axial TE11 mode radiation
Li Wei (李伟), Liu Yong-Gui (刘永贵), Shu Ting (舒挺), Qian Bao-Liang (钱宝良 ). Chin. Phys. B, 2012, 21(8): 088401.
[14] Effects of microwave pulse-width damage on a bipolar transistor
Ma Zhen-Yang(马振洋), Chai Chang-Chun(柴常春), Ren Xing-Rong(任兴荣), Yang Yin-Tang(杨银堂), Chen Bin(陈斌), and Zhao Ying-Bo(赵颖博) . Chin. Phys. B, 2012, 21(5): 058502.
[15] Chiral asymmetry of anti-symmetric coordinates studied by the Raman differential bond polarizability of S-phenylethylamine
Shen Hong-Xia (沈红霞), Wu Guo-Zhen (吴国祯), Wang Pei-Jie (王培杰). Chin. Phys. B, 2012, 21(12): 123301.
No Suggested Reading articles found!