Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(9): 3438-3443    DOI: 10.1088/1674-1056/17/9/049
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin-dependent tunnelling through an indirect double-barrier structure

Wang Rui(王瑞)a), Zhang Cun-Xi(张存喜)b), Wang Jian-Ming(王建明)b), and Liang Jiu-Qing(梁九卿)b)
a Physical Department, Zhejiang Ocean University, Zhoushan 316000, China; b Department of Physics and Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China
Abstract  We use the transfer matrix method to study the quantum tunnelling through an indirect-band-gap double-barrier like the GaAs/AlAs/GaAs/AlAs/GaAs heterostructures along the [001] axis, which is described by the tight-binding model. The $X$-valley quasi-bound state gives rise to the Fano resonance different from the direct double-barrier transition in a resonance-tunnelling diode. The quantitative calculations demonstrate that a relatively high spin-polarization of the transmission probability can be achieved as compared with the single-barrier tunnelling case. Moreover the extension to the multi-barrier device is provided and leads to an important observation that the spin polarization increases with the number of barriers.
Keywords:  spin-polarized      spin--orbit interaction      indirect-barrier  
Received:  05 March 2008      Revised:  14 April 2008      Accepted manuscript online: 
PACS:  73.40.Gk (Tunneling)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10475053).

Cite this article: 

Wang Rui(王瑞), Zhang Cun-Xi(张存喜), Wang Jian-Ming(王建明), and Liang Jiu-Qing(梁九卿) Spin-dependent tunnelling through an indirect double-barrier structure 2008 Chin. Phys. B 17 3438

[1] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[2] Spin transfer nano-oscillator based on synthetic antiferromagnetic skyrmion pair assisted by perpendicular fixed magnetic field
Yun-Xu Ma(马云旭), Jia-Ning Wang(王佳宁), Zhao-Zhuo Zeng(曾钊卓), Ying-Yue Yuan(袁映月), Jin-Xia Yang(杨金霞), Hui-Bo Liu(刘慧博), Sen-Fu Zhang(张森富), Jian-Bo Wang(王建波), Chen-Dong Jin(金晨东), and Qing-Fang Liu(刘青芳). Chin. Phys. B, 2022, 31(10): 100501.
[3] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[4] Magnetic vortex gyration mediated by point-contact position
Hua-Nan Li(李化南), Zi-Wei Fan(笵紫薇), Jia-Xin Li(李佳欣), Yue Hu(胡月), Hui-Lian Liu(刘惠莲). Chin. Phys. B, 2019, 28(10): 107503.
[5] Current-induced synchronized magnetization reversal of two-body Stoner particles with dipolar interaction
Zhou-Zhou Sun(孙周洲), Yu Yang(杨玉), J Schliemann. Chin. Phys. B, 2018, 27(6): 067501.
[6] Influence of spin-orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls
Lian Liu(刘恋), Wen-Xiang Chen(陈文祥), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2018, 27(4): 047201.
[7] Spin detection and manipulation with scanning tunneling microscopy
Chunlei Gao(高春雷). Chin. Phys. B, 2018, 27(10): 106701.
[8] Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons
Kai-Wei Yang(杨开巍), Ming-Jun Li(李明君), Xiao-Jiao Zhang(张小姣), Xin-Mei Li(李新梅), Yong-Li Gao(高永立), Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2017, 26(9): 098509.
[9] Photon-mediated spin-polarized current in a quantum dot under thermal bias
Feng Chi(迟锋), Liming Liu(刘黎明), Lianliang Sun(孙连亮). Chin. Phys. B, 2017, 26(3): 037304.
[10] Faster vortex core switching with lower current density using three-nanocontact spin-polarized currents in a confined structure
Hua-Nan Li(李化南), Zhong Hua(华中), Dong-Fei Li(李东飞). Chin. Phys. B, 2017, 26(1): 017502.
[11] First-principle investigation on perovskite La1-xEuxGaO3
Yanni Gu(顾艳妮), Sheng Xu(徐胜), Xiaoshan Wu(吴小山). Chin. Phys. B, 2016, 25(12): 123103.
[12] Antiferromagnetic and topological states in silicene: A mean field study
Liu Feng (刘峰), Liu Cheng-Cheng (刘铖铖), Yao Yu-Gui (姚裕贵). Chin. Phys. B, 2015, 24(8): 087503.
[13] Perfect GMR effect in gapped graphene-based ferromagnetic—normal—ferromagnetic junctions
Hossein Karbaschi, Gholam Reza Rashedi. Chin. Phys. B, 2015, 24(4): 047305.
[14] Trajectory and frequency of vortex gyration in a multi-nanocontact geometry
Li Hua-Nan (李化南), Liu Yan (柳艳), Jia Min (贾敏), Du An (杜安). Chin. Phys. B, 2015, 24(4): 047501.
[15] Majorana fermion realization and relevant transport processes in a triple-quantum dot system
Deng Ming-Xun (邓明勋), Zheng Shi-Han (郑诗菡), Yang Mou (杨谋), Hu Liang-Bin (胡梁宾), Wang Rui-Qiang (王瑞强). Chin. Phys. B, 2015, 24(3): 037302.
No Suggested Reading articles found!