Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 037302    DOI: 10.1088/1674-1056/24/3/037302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Majorana fermion realization and relevant transport processes in a triple-quantum dot system

Deng Ming-Xun (邓明勋), Zheng Shi-Han (郑诗菡), Yang Mou (杨谋), Hu Liang-Bin (胡梁宾), Wang Rui-Qiang (王瑞强)
Laboratory of Quantum Engineering and Quantum Materials, ICMP and SPTE, South China Normal University, Guangzhou 510006, China
Abstract  

Nonequilibrium electronic transports through a system hosting three quantum dots hybridized with superconductors are investigated. By tuning the relative positions of the dot levels, we illustrate the existence of Majorana fermions and show that the Majorana feimions will either survive separately on single dots or distribute themselves among different dots with tunable probabilities. As a result, different physical mechanisms appear, including local Andreev reflection (LAR), cross Andreev reflection (CAR), and cross resonant tunneling (CRT). The resulting characteristics may be used to reveal the unique properties of Majorana fermions. In addition, we discuss the spin-polarized transports and find a pure spin current and a spin filter effect due to the joint effect of CRT and CAR, which is important for designing spintronic devices.

Keywords:  Majorana fermion      quantum dots hybridized with superconductors      spin-polarized transports  
Received:  18 August 2014      Revised:  10 October 2014      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
  73.23.Hk (Coulomb blockade; single-electron tunneling)  
Fund: 

Project supported by the New Century Excellent Talents in University of China (Grant No. NCET-10-0090), the National Natural Science Foundation of China (Grant Nos. 11474106, 11174088, and 11274124), the Program for Changjiang Scholars and Innovative Research Team in University of China (Grant No. IRT1243), and the Natural Science Foundation of Guangdong Province, China (Grant No. S2012010010681).

Corresponding Authors:  Wang Rui-Qiang     E-mail:  wangrqgz@163.com

Cite this article: 

Deng Ming-Xun (邓明勋), Zheng Shi-Han (郑诗菡), Yang Mou (杨谋), Hu Liang-Bin (胡梁宾), Wang Rui-Qiang (王瑞强) Majorana fermion realization and relevant transport processes in a triple-quantum dot system 2015 Chin. Phys. B 24 037302

[1] Sato M, Takahashi Y and Fujimoto S 2009 Phys. Rev. Lett. 103 020401
[2] Alicea J 2010 Phys. Rev. B 81 125318
[3] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[4] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[5] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
[6] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[7] Nayak C, Simon S H, Stern A, Freedman M and Sarma S D 2008 Rev. Mod. Phys. 80 1083
[8] Stern A 2010 Nature 464 187
[9] Alicea J, Oreg Y, Refael G, von Oppen F and Fisher M P A 2011 Nat. Phys. 7 412
[10] Liu D E and Baranger H U 2011 Phys. Rev. B 84 201308(R)
[11] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
[12] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[13] Fu L and Kane C L 2009 Phys. Rev. B 79 161408(R)
[14] Liu Y, Ma Z, Zhao Y F, Meenakshi S and Wang J 2013 Chin. Phys. B 22 067302
[15] He K, Ma X C, Chen X, Lü L, Wang Y Y and Xue Q K 2013 Chin. Phys. B 22 067305
[16] Yuan J H, Cheng Z, Zhang J J, Zeng Q J and Zhang J P 2012 Chin. Phys. B 21 047203
[17] Kitaev A Y 2001 Phys. Usp. 44 131
[18] Sau J D and Das Sarma S 2012 Nat. Commun. 3 964
[19] Fulga I C, Haim A, Akhmerov A R and Oreg Y 2013 New J. Phys. 15 045020
[20] Leijnse M and Flensberg K 2012 Phys. Rev. B 86 134528
[21] Bolech C J and Demler E 2007 Phys. Rev. Lett. 98 237002
[22] Law K T, lee P A and Ng T K 2009 Phys. Rev. Lett. 103 237001
[23] Nilsson J, Akhmerov A R and Beenakker C W J 2008 Phys. Rev. Lett. 101 120403
[24] Strübi G, Belzig W, Choi M S and Bruder C 2011 Phys. Rev. Lett. 107 136403
[25] Cao Y, Wang P, Xiong G, Gong M and Li X Q 2012 Phys. Rev. B 86 115311
[26] Wang P, Cao Y, Gong M, Xiong G and Li X Q 2013 Europhys. Lett. 103 57016
[27] Lü H F, Lu H Z and Shen S Q 2012 Phys. Rev. B 86 075318
[28] Zocher B and Rosenow B 2013 Phys. Rev. Lett. 111 036802
[29] Pötlt C, Emary C and Brandes T 2009 Phys. Rev. B 80 115313
[30] Leijnse M and Flensberg K 2011 Phys. Rev. B 84 140501
[31] Žitko R and Simon P 2011 Phys. Rev. B 84 195310
[32] Lee M, Lim J S and López R 2013 Phys. Rev. B 87 241402(R)
[33] Leijinse M and Flensberg K 2011 Phys. Rev. Lett. 107 210502
[34] Shang E M, Pan Y M, Shao L B and Wang B G 2014 Chin. Phys. B 23 057201
[35] Wright A R and Veldhorst M 2013 Phys. Rev. Lett. 111 096801
[36] Emary C, Pötlt C and Brandes T 2009 Phys. Rev. B 80 235321
[37] Lu H Z, Zhou B and Shen S Q 2009 Phys. Rev. B 79 174419
[38] Cottet A, Belzig W and Bruder C 2004 Phys. Rev. Lett. 92 206801
[39] Djuric I, Dong B and Cui H L 2005 IEEE Trans. Nanotechnol. 4 71
[40] Wang R Q, Sheng L, Hu L B, Wang B G and Xing D Y 2011 Phys. Rev. B 84 115304
[41] Pan H, Li Z S and Lü R 2013 Chin. Phys. Lett. 30 087102
[42] Ying Y B and Jin G J 2010 Appl. Phys. Lett. 96 093104
[43] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
[1] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[2] Negative tunnel magnetoresistance in a quantum dot induced by interplay of a Majorana fermion and thermal-driven ferromagnetic leads
Peng-Bin Niu(牛鹏斌), Bo-Xiang Cui(崔博翔), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(9): 097401.
[3] Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions
Qing Yan(闫青) and Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2021, 30(4): 040303.
[4] Realizing Majorana fermion modes in the Kitaev model
Lu Yang(杨露), Jia-Xing Zhang(张佳星), Shuang Liang(梁爽), Wei Chen(陈薇), and Qiang-Hua Wang(王强华). Chin. Phys. B, 2021, 30(11): 117504.
[5] Phase diagram of interacting fermionic two-leg ladder with pair hopping
Wan-Li Liu(刘万里), Tian-Zhong Yuan(原天忠), Zhi Lin(林志), Wei Yan(闫伟). Chin. Phys. B, 2019, 28(2): 020303.
[6] Robustness of coherence between two quantum dots mediated by Majorana fermions
Liang Chen(陈亮), Ye-Qi Zhang(张业奇), Rong-Sheng Han(韩榕生). Chin. Phys. B, 2018, 27(7): 077102.
[7] Solid-state quantum computation station
Fanming Qu(屈凡明), Zhongqing Ji(姬忠庆), Ye Tian(田野), Shiping Zhao(赵士平). Chin. Phys. B, 2018, 27(7): 070301.
[8] Chiral p-wave pairing of ultracold fermionic atoms due to a quadratic band touching
Hai-Xiao Wang(王海啸), Zi-Heng Liu(刘子衡), Jian-Hua Jiang(蒋建华). Chin. Phys. B, 2018, 27(2): 027402.
[9] The stability of Majorana fermion in correlated quantum wire
Zhang De-Ping (张德平), Tian Guang-Shan (田光善). Chin. Phys. B, 2015, 24(8): 080401.
[10] Topological phase transitions driven by next-nearest-neighbor hopping in noncentrosymmetric cold Fermi gases
Wang Rui (王瑞), Zhang Cun-Xi (张存喜), Ji Qing-Shan (计青山). Chin. Phys. B, 2015, 24(3): 030305.
[11] Detection of Majorana fermions in an Aharonov-Bohm interferometer
Shang En-Ming (尚恩明), Pan Yi-Ming (潘义明), Shao Lu-Bing (邵陆兵), Wang Bai-Gen (王伯根). Chin. Phys. B, 2014, 23(5): 057201.
[12] All-electrically reading out and initializing topological qubits with quantum dots
Chen Wei (陈伟), Xue Zheng-Yuan (薛正远), Wang Z. D.(汪子丹) , Shen Rui (沈瑞). Chin. Phys. B, 2014, 23(3): 030309.
No Suggested Reading articles found!