CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Majorana fermion realization and relevant transport processes in a triple-quantum dot system |
Deng Ming-Xun (邓明勋), Zheng Shi-Han (郑诗菡), Yang Mou (杨谋), Hu Liang-Bin (胡梁宾), Wang Rui-Qiang (王瑞强) |
Laboratory of Quantum Engineering and Quantum Materials, ICMP and SPTE, South China Normal University, Guangzhou 510006, China |
|
|
Abstract Nonequilibrium electronic transports through a system hosting three quantum dots hybridized with superconductors are investigated. By tuning the relative positions of the dot levels, we illustrate the existence of Majorana fermions and show that the Majorana feimions will either survive separately on single dots or distribute themselves among different dots with tunable probabilities. As a result, different physical mechanisms appear, including local Andreev reflection (LAR), cross Andreev reflection (CAR), and cross resonant tunneling (CRT). The resulting characteristics may be used to reveal the unique properties of Majorana fermions. In addition, we discuss the spin-polarized transports and find a pure spin current and a spin filter effect due to the joint effect of CRT and CAR, which is important for designing spintronic devices.
|
Received: 18 August 2014
Revised: 10 October 2014
Accepted manuscript online:
|
PACS:
|
73.21.La
|
(Quantum dots)
|
|
74.45.+c
|
(Proximity effects; Andreev reflection; SN and SNS junctions)
|
|
73.23.Hk
|
(Coulomb blockade; single-electron tunneling)
|
|
Fund: Project supported by the New Century Excellent Talents in University of China (Grant No. NCET-10-0090), the National Natural Science Foundation of China (Grant Nos. 11474106, 11174088, and 11274124), the Program for Changjiang Scholars and Innovative Research Team in University of China (Grant No. IRT1243), and the Natural Science Foundation of Guangdong Province, China (Grant No. S2012010010681). |
Corresponding Authors:
Wang Rui-Qiang
E-mail: wangrqgz@163.com
|
Cite this article:
Deng Ming-Xun (邓明勋), Zheng Shi-Han (郑诗菡), Yang Mou (杨谋), Hu Liang-Bin (胡梁宾), Wang Rui-Qiang (王瑞强) Majorana fermion realization and relevant transport processes in a triple-quantum dot system 2015 Chin. Phys. B 24 037302
|
[1] |
Sato M, Takahashi Y and Fujimoto S 2009 Phys. Rev. Lett. 103 020401
|
[2] |
Alicea J 2010 Phys. Rev. B 81 125318
|
[3] |
Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
|
[4] |
Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
|
[5] |
Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
|
[6] |
Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
|
[7] |
Nayak C, Simon S H, Stern A, Freedman M and Sarma S D 2008 Rev. Mod. Phys. 80 1083
|
[8] |
Stern A 2010 Nature 464 187
|
[9] |
Alicea J, Oreg Y, Refael G, von Oppen F and Fisher M P A 2011 Nat. Phys. 7 412
|
[10] |
Liu D E and Baranger H U 2011 Phys. Rev. B 84 201308(R)
|
[11] |
Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
|
[12] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[13] |
Fu L and Kane C L 2009 Phys. Rev. B 79 161408(R)
|
[14] |
Liu Y, Ma Z, Zhao Y F, Meenakshi S and Wang J 2013 Chin. Phys. B 22 067302
|
[15] |
He K, Ma X C, Chen X, Lü L, Wang Y Y and Xue Q K 2013 Chin. Phys. B 22 067305
|
[16] |
Yuan J H, Cheng Z, Zhang J J, Zeng Q J and Zhang J P 2012 Chin. Phys. B 21 047203
|
[17] |
Kitaev A Y 2001 Phys. Usp. 44 131
|
[18] |
Sau J D and Das Sarma S 2012 Nat. Commun. 3 964
|
[19] |
Fulga I C, Haim A, Akhmerov A R and Oreg Y 2013 New J. Phys. 15 045020
|
[20] |
Leijnse M and Flensberg K 2012 Phys. Rev. B 86 134528
|
[21] |
Bolech C J and Demler E 2007 Phys. Rev. Lett. 98 237002
|
[22] |
Law K T, lee P A and Ng T K 2009 Phys. Rev. Lett. 103 237001
|
[23] |
Nilsson J, Akhmerov A R and Beenakker C W J 2008 Phys. Rev. Lett. 101 120403
|
[24] |
Strübi G, Belzig W, Choi M S and Bruder C 2011 Phys. Rev. Lett. 107 136403
|
[25] |
Cao Y, Wang P, Xiong G, Gong M and Li X Q 2012 Phys. Rev. B 86 115311
|
[26] |
Wang P, Cao Y, Gong M, Xiong G and Li X Q 2013 Europhys. Lett. 103 57016
|
[27] |
Lü H F, Lu H Z and Shen S Q 2012 Phys. Rev. B 86 075318
|
[28] |
Zocher B and Rosenow B 2013 Phys. Rev. Lett. 111 036802
|
[29] |
Pötlt C, Emary C and Brandes T 2009 Phys. Rev. B 80 115313
|
[30] |
Leijnse M and Flensberg K 2011 Phys. Rev. B 84 140501
|
[31] |
Žitko R and Simon P 2011 Phys. Rev. B 84 195310
|
[32] |
Lee M, Lim J S and López R 2013 Phys. Rev. B 87 241402(R)
|
[33] |
Leijinse M and Flensberg K 2011 Phys. Rev. Lett. 107 210502
|
[34] |
Shang E M, Pan Y M, Shao L B and Wang B G 2014 Chin. Phys. B 23 057201
|
[35] |
Wright A R and Veldhorst M 2013 Phys. Rev. Lett. 111 096801
|
[36] |
Emary C, Pötlt C and Brandes T 2009 Phys. Rev. B 80 235321
|
[37] |
Lu H Z, Zhou B and Shen S Q 2009 Phys. Rev. B 79 174419
|
[38] |
Cottet A, Belzig W and Bruder C 2004 Phys. Rev. Lett. 92 206801
|
[39] |
Djuric I, Dong B and Cui H L 2005 IEEE Trans. Nanotechnol. 4 71
|
[40] |
Wang R Q, Sheng L, Hu L B, Wang B G and Xing D Y 2011 Phys. Rev. B 84 115304
|
[41] |
Pan H, Li Z S and Lü R 2013 Chin. Phys. Lett. 30 087102
|
[42] |
Ying Y B and Jin G J 2010 Appl. Phys. Lett. 96 093104
|
[43] |
Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|